- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:
(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;
(2)据统计表明,y与x之间具有线性关系.
①请用相关系数r对y与x之间的相关性强弱进行判断;(若
,则可认为y与x有较强的线性相关关系(r值精确到0.001))
②经计算求得y与x之间的回归方程为
,假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围.(x值精确到0.01)
相关公式:
,
参考数据:
.
| 1日 | 2日 | 3日 | 4日 | 5日 |
外卖甲日接单x(百单) | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单y(百单) | 2 | 3 | 10 | 5 | 15 |
(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;
(2)据统计表明,y与x之间具有线性关系.
①请用相关系数r对y与x之间的相关性强弱进行判断;(若

②经计算求得y与x之间的回归方程为

相关公式:

参考数据:

手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)
(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?
(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:
参考公式:
.
年龄段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?
| 年龄低于45岁 | 年龄不低于45岁 |
使用手机支付 | | |
不使用手机支付 | | |
(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:

某地区不同身高
的未成年男孩的体重平均值
如下表:
已知
与
之间存在很强的线性相关性,
(1)据此建立
与
之间的回归方程;
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高
体重为
的在校男生的体重是否正常?
参考数据:
,
,
附:对于一组数据
,
,…,
,其回归直线
中的斜率和截距的最小二乘估计分别为
,
.


身高![]() | 60 | 70 | 80 | 90 | 100 |
体重![]() | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知


(1)据此建立


(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高


参考数据:



附:对于一组数据






近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式
其中
)
| 患心肺疾病 | 不患心肺疾病 | 合计 |
男 | | 5 | |
女 | 10 | | |
合计 | | | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式


为推进“千村百镇计划”,
年
月某新能源公司开展“电动莆田 绿色出行”活动,首批投放
台
型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对
型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为
分).最后该公司共收回
份评分表,现从中随机抽取
份(其中男、女的评分表各
份)作为样本,经统计得到如下茎叶图:

(1)求
个样本数据的中位数
;
(2)已知
个样本数据的平均数
,记
与
的最大值为
.该公司规定样本中试用者的“认定类型”:评分不小于
的为“满意型”,评分小于
的为“需改进型”.
①请根据
个样本数据,完成下面
列联表:

根据
列联表判断能否有
的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为
,求
的分布列及数学期望.










(1)求


(2)已知







①请根据



根据


②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为



“新车嗨翻天!首付3000元起开新车”这就是毛豆新车网打出来的广告语.某人看到广告,兴奋不已,计划于2019年1月在该网站购买一辆某品牌汽车,他从当地了解到近五个月该品牌汽车实际销量如表:
(1)经分析,可用线性回归模型拟合当地该品牌汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程
,并估计2019年1月份该品牌汽车的销量:
(2)为了增加销量,厂家和毛豆新车网联合推出对购该品牌车进行补贴.已知某地拟购买该品牌汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:
将频率视为概率,现用随机抽样方法从该地区拟购买该品牌汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望E(ξ)
参考公式及数据:①回归方程
,其中
,
;②
.
月份 | 2018.08 | 2018.09 | 2018.10 | 2018.11 | 2018.12 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
销量y(万辆) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析,可用线性回归模型拟合当地该品牌汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程

(2)为了增加销量,厂家和毛豆新车网联合推出对购该品牌车进行补贴.已知某地拟购买该品牌汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:
补贴金额预期值 区间(万元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7) |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
将频率视为概率,现用随机抽样方法从该地区拟购买该品牌汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望E(ξ)
参考公式及数据:①回归方程




某校教务处对学生学习的情况进行调研,其中一项是:对“学习数学”的态度是否与性别有关,可见随机抽取了30名学生进行了问卷调查,得到了如下联表:
已知在这30人中随机抽取1人,抽到喜欢“学习数学”的学生的概率是
.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);
(2)若从喜欢“学习数学”的女生中抽取2人进行调研,其中女生甲被抽到的概率为多少?(要写求解过程)
(3)试判断是否有95%的把握认为喜欢“学习数学”与性别有关?
附:
,其中
.
| 男生 | 女生 | 合计 |
喜欢 | 10 | | |
不喜欢 | | 8 | |
合计 | | | 30 |
已知在这30人中随机抽取1人,抽到喜欢“学习数学”的学生的概率是

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);
(2)若从喜欢“学习数学”的女生中抽取2人进行调研,其中女生甲被抽到的概率为多少?(要写求解过程)
(3)试判断是否有95%的把握认为喜欢“学习数学”与性别有关?
附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;
(3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.
参考公式:
.
独立性检验临界值表:
| 喜好体育运动 | 不喜好体育运动 |
男生 | | 5 |
女生 | 10 | |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;
(3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.
参考公式:

独立性检验临界值表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列
列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求
的分布列及数学期望.
附
,其中
(1)完成下列

| 属于“追光族" | 属于“观望者" | 合计 |
女性员工 | | | |
男性员工 | | | |
合计 | | | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求

附


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |