- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的
列联表:
已知从该班随机抽取1人为喜欢的概率是
.
(Ⅰ)请完成上面的
列联表;
(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.
参考临界值表:
参考公式:
其中

| 喜欢 | 不喜欢 | 合计 |
男生 | | 18 | |
女生 | 6 | | |
合计 | | | 60 |
已知从该班随机抽取1人为喜欢的概率是

(Ⅰ)请完成上面的

(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.
参考临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为
.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
.
| 玩手机 | 不玩手机 | 合计 |
学习成绩优秀 | | 8 | |
学习成绩不优秀 | 16 | | |
合计 | | | 30 |
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为

(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
参考公式:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
| “满意”的人数 | “不满意”的人数 | 合计 |
女 | | | 16 |
男 | | | 14 |
合计 | | | 30 |
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
![]() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:

如图所示,5组数据
中去掉
后,下列说法错误的是( )




A.残差平方和变大 | B.相关系数![]() |
C.相关指数![]() | D.解释变量x与预报变量y的相关性变强 |
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
(2)试求从年收入位于
(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:
,其中
.
参考值表:
月收入(单位百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
| 月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于

参考公式:


参考值表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:


| 经常使用 | 偶尔使用或不使用 | 合计 |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)根据以上数据,能否在犯错误的概率不超过


(2)(i)现从所选取的






(ii)将频率视为概率,从




参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
为了对






下列关于回归分析与独立性检验的说法正确的是()
A.回归分析和独立性检验没有什么区别; |
B.回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系; |
C.独立性检验可以![]() |
D.回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验; |
在吸烟与患肺病是否相关的判断中,有下面的说法:
(1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有
的可能性使得推断错误.
(2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有
的可能患有肺病;
(3)若
,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
其中说法正确的是________ .
(1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有

(2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有

(3)若

其中说法正确的是