- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某淘宝商城在2017年前7个月的销售额
(单位:万元)的数据如下表,已知
与
具有较好的线性关系.
(1)求
关于
的线性回归方程;
(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.



月份![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
销售额![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求


(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:


某百货公司1~6月份的销售量与利润的统计数据如表:
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程
x+
;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程


(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
某连锁经营公司所属5个零售店某月的销售额和利润额资料如表所示:
(1)画出销售额和利润额的散点图.
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程
=
x+
,其中
=
,
=
-
.
(3)若获得利润是4.5百万元时估计销售额是多少(千万元)?
商店名称 | A | B | C | D | E |
销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额(y)/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出销售额和利润额的散点图.
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程









(3)若获得利润是4.5百万元时估计销售额是多少(千万元)?
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合
与
的关系,请用相关系数
加以说明;(系数精确到
);
(2)建立
关于
的回归方程
(系数精确到
);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入促销费用多少万元(结果精确到
).
参考数据:
,
,
,
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)样本
的相关系数
.
(2)对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | ![]() | 5 | 4 | ![]() |
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合




(2)建立





参考数据:









参考公式:
(1)样本


(2)对于一组数据






某电脑公司的三名产品推销员的工作年限与年推销金额数据如下表:
由表中数据算出线性回归直线方程
x+
中的
,若该电脑公司的第四名推销员的工作年限为6年,则估计他的年推销金额为_____万元.
推销员编号 | 1 | 2 | 3 |
工作年限x/年 | 3 | 5 | 10 |
年推销金额y/万元 | 2 | 3 | 4 |
由表中数据算出线性回归直线方程



假设关于某设备的使用年限x和所支出的维修费用y(单位:万元)有如下的统计资料:
若由资料知y对x呈线性相关关系.试求:
(1)回归方程
x+
的系数
.
(2)使用年限为10年时,试估计维修费用是多少.
使用年限x/年 | 2 | 3 | 4 | 5 | 6 |
维修费用y/万元 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系.试求:
(1)回归方程



(2)使用年限为10年时,试估计维修费用是多少.
炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一些数据,如下表所示:
(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗?
(2)求回归直线方程.
(3)预测当钢水含碳量为160时,应冶炼多少分钟?
x/0.01% | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
y/min | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗?
(2)求回归直线方程.
(3)预测当钢水含碳量为160时,应冶炼多少分钟?
某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应关系:
(1)假定y与x之间有线性相关关系,求其回归直线方程;
(2)若实际的销售额不少于60百万元,则广告费支出应不少于多少?
x/百万元 | 2 | 4 | 5 | 6 | 8 |
y/百万元 | 30 | 40 | 60 | 50 | 70 |
(1)假定y与x之间有线性相关关系,求其回归直线方程;
(2)若实际的销售额不少于60百万元,则广告费支出应不少于多少?