刷题首页
题库
高中数学
题干
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:
月份
1
2
3
4
5
6
7
8
促销费用
2
3
6
10
13
21
15
18
产品销量
1
1
2
3
5
4
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合
与
的关系,请用相关系数
加以说明;(系数精确到
);
(2)建立
关于
的回归方程
(系数精确到
);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入促销费用多少万元(结果精确到
).
参考数据:
,
,
,
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)样本
的相关系数
.
(2)对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-22 07:43:10
答案(点此获取答案解析)
同类题1
为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:
kwh
)和家庭月收入(单位:方元)月用电量数据如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入数据如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56元/
kwh
,20%的用户在第二档,电价为0.61元
/kwh
,5%的用户在第三档,电价为0.86元
/kwh
,试求出居民用电费用
Q
与用电量
x
间的函数关系式;
(2)以家庭月收入
t
为横坐标,电量
x
为纵坐标作出散点图(如图)求出
x
关于
t
的回归直线方程(系数四舍五入保留整数);
(3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?
同类题2
近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
年份序号
1
2
3
4
5
6
7
8
9
10
工业增加值
13.2
13.8
16.5
19.5
20.9
22.2
23.4
23.7
24.8
28
依据表格数据,得到下面的散点图及一些统计量的值.
5.5
20.6
82.5
211.52
129.6
(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
同类题3
某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:
年份
2011
2012
2013
2014
2015
2016
年份代码
1
2
3
4
5
6
使用率
(
)
11
13
16
15
20
21
(1)请根据以上数据,用最小二乘法求水上摩托使用率
关于年份代码
的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;
(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:
已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润
收益
购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?
附:回归直线方程为
,其中
,
.
同类题4
近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),绘制了如图所示的散点图:
(I)根据散点图判断在推广期内,
与
(c,d为为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(I)的判断结果求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次.
参考数据:
4
62
1.54
2535
50.12
140
3.47
其中
,
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
。
同类题5
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差x/摄氏度
10
11
13
12
8
发芽数y/颗
23
25
30
26
16
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验。
(Ⅰ)求选取的2组数据恰好是不相邻2天的数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出
y
关于
x
的线性回归方程
,并判断该线性回归方程是否可靠(若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
相关知识点
计数原理与概率统计
统计
变量间的相关关系
回归直线方程
用回归直线方程对总体进行估计
求回归直线方程