- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某地区某种农产品的年产量
(单位:吨)对价格
(单位:千元/吨)和利润
的影响,对近五年该农产品的年产量和价格统计如下表:

已知
和
具有线性相关关系
(Ⅰ)求
关于
的线性回归方程
;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润
取到最大值?(保留一位小数)
参考数据及公式:
,





已知


(Ⅰ)求



(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润

参考数据及公式:



在2017年3月15日,某物价部门对本市5家商场某商品一天的销售额及其价格进行调查,5家商场的价格
与销售额
之间的一组数据如下表所示:

由散点图可知,销售额
与价格
之间有较好的线性相关关系,且回归直线方程是
,则
( )



由散点图可知,销售额




A.![]() | B.35.6 | C.40 | D.40.5 |
已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:

(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估计第3年8月份的利润.
相关公式
,
.

(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估计第3年8月份的利润.
月份 | 1 | 2 | 3 | 4 |
利润![]() | 4 | 4 | 6 | 6 |
相关公式


下表是某小卖部统计出的五天中卖出热茶的杯数与当天气温的对比表:

若卖出热茶的杯数
与气温
近似地满足线性关系,则其关系式最接近的是( )

若卖出热茶的杯数


A.![]() | B.![]() |
C.![]() | D.![]() |
某餐馆将推出一种新品特色菜,为更精准确定最终售价,这种菜按以下单价各试吃1天,得
(1)求销量
关于
的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每份特色菜的成本是15元,为了获得最大利润,该特色菜的单价应定为多少元?
(附:
,
)
单价![]() | 18 | 19 | 20 | 21 | 22 |
销量![]() | 61 | 56 | 50 | 48 | 45 |
(1)求销量


(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每份特色菜的成本是15元,为了获得最大利润,该特色菜的单价应定为多少元?
(附:


已知具有线性相关关系的两个变量
之间的几组数据如下表所示:
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并估计当
时,
的值;
(2)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求恰有1个点落在直线
右下方的概率.
参考公式:
,
.

![]() | 2 | 4 | 6 | 8 | 10 |
![]() | 3 | 6 | 7 | 10 | 12 |
(1)请根据上表提供的数据,用最小二乘法求出





(2)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求恰有1个点落在直线

参考公式:


已知某产品连续
个月的广告费
(千元)与销售额
(万元)(
),经过对这些数据的处理,得到如下数据信息:①
;②广告费用
和销售额
之间具有较强的线性相关关系;③回归直线方程
中的
.
那么广告费用为
千元时,则可预测销售额约为__________万元.









那么广告费用为

某葡萄基地的种植专家发现,葡萄每株的收获量
(单位:
)和与它“相近”葡萄的株数
具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄每株收获量的相关数据如下:

(1)求该葡萄每株的收获量
关于它“相近”葡萄的株数
的线性回归方程及
的方差
;
(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/
投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)
(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为
,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)




![]() | 1 | 2 | 3 | 5 | 6 | 7 |
![]() | 15 | 13 | 12 | 10 | 9 | 7 |
| | | | | | |

(1)求该葡萄每株的收获量




(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/

(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为

某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量
(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量
(百斤)与每个蔬菜大棚使用农夫1号液体肥料
(千克)之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出
关于
的线性回归方程
;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量
是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式:
,
.




(1)依据数据的折线图,用最小二乘法求出




(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量

周光照量![]() | 30<X<50 | ![]() | ![]() |
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式:

