- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净。假设1千克该蔬菜用清水
千克清洗后,蔬菜上残留的农药为
微克,通过样本数据得到
关于
的散点图。由数据分析可用函数
拟合
与
的关系.

(1)求
与
的回归方程
(
精确到0.1);
(2)已知对于残留在蔬菜上的农药,当它的残留量不超过20微克时对人体无害。为了放心食用该蔬菜,请估计至少需要用多少克的清水清洗1千克蔬菜?(答案精确到0.1)
附:①参考数据:
,
,
(其中
),
。
②参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.








(1)求




(2)已知对于残留在蔬菜上的农药,当它的残留量不超过20微克时对人体无害。为了放心食用该蔬菜,请估计至少需要用多少克的清水清洗1千克蔬菜?(答案精确到0.1)
附:①参考数据:





②参考公式:对于一组数据



某地区2011年至2017年农村居民家庭人均纯
(单位:千元)的数据如表:其中y与t线性相关,预测该地区2020年农村居民家庭人均纯收入为_______ 千元
附:回归直线的斜率和截距的最小二乘法估计公式及相关数据分别为:
,
,
,
,

年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
附:回归直线的斜率和截距的最小二乘法估计公式及相关数据分别为:





某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
(1)求回归直线方程;(参考公式:b=
,
)
(2)试预测广告费支出为10万元时,销售额多大?
(参考数据:
,
,
)


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;(参考公式:b=


(2)试预测广告费支出为10万元时,销售额多大?
(参考数据:



“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用
(单位:万元)和利润
(单位:十万元)之间的关系,得到下列数据:
(1)请用相关系数
说明
与
之间是否存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)根据(1)的判断结果,建立
与
之间的回归方程,并预测当
时,对应的利润
为多少(
精确到0.1).
附参考公式:回归方程中
中
和
最小二乘估计分别为
,相关系数
参考数据:
.


![]() | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 |
![]() | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数






(2)根据(1)的判断结果,建立





附参考公式:回归方程中





参考数据:

下表为2015年至2018年某百货零售企业的年销售额
(单位:万元)与年份代码
的对应关系,其中年份代码
年份-2014(如:
代表年份为2015年)。
(1)已知
与
具有线性相关关系,求
关于
的线性回归方程,并预测2019年该百货零售企业的年销售额;
(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下
列联表:
问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?
参考公式及数据:回归直线方程
,





年份代码![]() | 1 | 2 | 3 | 4 |
年销售额![]() | 105 | 155 | 240 | 300 |
(1)已知




(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下

| 持乐观态度 | 持不乐观态度 | 总计 |
男顾客 | 45 | 15 | 60 |
女顾客 | 30 | 20 | 50 |
总计 | 75 | 35 | 110 |
问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?
参考公式及数据:回归直线方程


![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第
条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以
元罚款,记
分的行政处罚.如表是本市一主干路段监控设备所抓拍的
个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
(Ⅰ)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(Ⅱ)预测该路段
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.




月份 | ![]() | ![]() | ![]() | ![]() | ![]() |
违章驾驶员人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)请利用所给数据求违章人数



(Ⅱ)预测该路段

参考公式:


某高三理科班共有
名同学参加某次考试,从中随机挑出
名同学,他们的数学成绩
与物理成绩
如下表:
(1)数据表明
与
之间有较强的线性关系,求
关于
的线性回归方程;
(2)本次考试中,规定数学成绩达到
分为优秀,物理成绩达到
分为优秀.若该班数学优秀率与物理优秀率分别为
和
,且除去抽走的
名同学外,剩下的同学中数学优秀但物理不优秀的同学共有
人,请写出
列联表,判断能否在犯错误的概率不超过
的前提下认为数学优秀与物理优秀有关?
参考数据:
,
;
,
;




数学成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
物理成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)数据表明




(2)本次考试中,规定数学成绩达到








参考数据:





随着智能手机的普及,各类手机娱乐软件也如雨后春笋般涌现. 如表中统计的是某手机娱乐软件自2018年8月初推出后至2019年4月底的月新注册用户数,记月份代码为
(如
对应于2018年8月份,
对应于2018年9月份,…,
对应于2019年4月份),月新注册用户数为
(单位:百万人)

(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;
(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.
参考数据:
,
,
.
回归直线的斜率和截距公式:
,
.
相关系数
(当
时,认为两相关变量相关性很强. )
注意:两问的计算结果均保留两位小数






(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;
(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.
参考数据:



回归直线的斜率和截距公式:


相关系数


注意:两问的计算结果均保留两位小数
某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;

(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
=86,
=64,
(xi-
)(yi-
)=4698,
(xi-
)2=5524,
≈0.85.求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
=
,
=
-
.

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;

(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩分组 | [50,60﹚ | [60,70﹚ | [70,80﹚ | [80,90﹚ | [90,100﹚ | [100,110﹚ | [110,120] |
频数 | | | | | | | |

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:








附:回归直线方程的斜率和截距的最小二乘估计公式分别为:





某酱油厂对新品种酱油进行了定价,在各超市得到售价与销售量的数据如下表:
(1)求售价与销售量的回归直线方程;(
,
)
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/瓶,为使工厂获得最大利润(利润=销售收入
成本),该产品的单价应定为多少元?
相关公式:
,
.
单价![]() | 5 | 5.2 | 5.4 | 5.6 | 5.8 | 6 |
销量![]() | 9.0 | 8.4 | 8.3 | 8.0 | 7.5 | 6.8 |
(1)求售价与销售量的回归直线方程;(


(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/瓶,为使工厂获得最大利润(利润=销售收入

相关公式:

