- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)的数据如下:
若用线性回归模型拟合
与
的关系,则
关于
的线性回归方程为__________________.
参考数据及公式:
.


超市 | A | B | C | D | E | F | G |
广告费支出![]() | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额![]() | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
若用线性回归模型拟合




参考数据及公式:

在某种产品表面进行腐蚀刻线实验,得到腐蚀深度y与腐蚀时间x之间的一组观察值如下表:
(1)画出散点图;
(2)求y对x的线性回归方程;
(3)利用线性回归方程预测时间为100 s时腐蚀深度为多少.
x/s | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 90 | 120 |
y/μm | 6 | 10 | 10 | 13 | 16 | 17 | 19 | 23 | 25 | 29 | 46 |
(1)画出散点图;
(2)求y对x的线性回归方程;
(3)利用线性回归方程预测时间为100 s时腐蚀深度为多少.
已知变量x与变量y之间具有相关关系,并测得如下一组数据:
则变量x与y之间的线性回归直线方程可能为
x | 6 | 5 | 10 | 12 |
y | 6 | 5 | 3 | 2 |
则变量x与y之间的线性回归直线方程可能为
A.![]() | B.![]() | C.![]() | D.![]() |
调查某公司的五名推销员,其工作年限与年推销金额如下表:
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
推销员 | A | B | C | D | E |
工作年限x(年) | 2 | 3 | 5 | 7 | 8 |
年推销金额y(万元) | 3 | 3.5 | 4 | 6.5 | 8 |
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;

(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
某产品的广告支出
(单位:万元)与销售收入
(单位:万元)之间有下表所对应的数据:
(1)画出表中数据的散点图;
(2)求出
对
的线性回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:
,
.


广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
销售收入支y(单位:万元) | 12 | 28 | 42 | 56 |
(1)画出表中数据的散点图;
(2)求出


(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:


现有某高新技术企业年研发费用投入
(百万元)与企业年利润
(百万元)之间具有线性相关关系,近5年的年研发费用和年利润的具体数据如表:
(1)画出散点图;
(2)求
对
的回归直线方程;
(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?


年研发费用 ![]() | 1 | 2 | 3 | 4 | 5 |
年利润![]() | 2 | 3 | 4 | 4 | 7 |
(1)画出散点图;
(2)求


(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?
禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数
(个)随时间
(天)变化的规律,收集数据如下:
作出散点图可看出样本点分布在一条指数型函数
的周围.
(1)求出
关于
的回归方程(保留小数点后两位数字);
(2)已知
,估算第四天的残差.
参考公式:
.
保留小数点后两位数的参考数据:
,
,
,
,
,
,
,
,其中
.


天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数

(1)求出


(2)已知

参考公式:

保留小数点后两位数的参考数据:









某种产品的广告费用支出
万元与销售额
万元之间有如下的对应数据:
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出
关于
的线性回归方程;
(3)据此估计广告费用为
万元时,所得的销售收入.
(参考数值:
,
)


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出


(3)据此估计广告费用为

(参考数值:


有10名同学高一(x)和高二(y)的数学成绩如下:
(1)画出散点图;
(2)求y对x的回归方程.
高一成绩x | 74 | 71 | 72 | 68 | 76 | 73 | 67 | 70 | 65 | 74 |
高二成绩y | 76 | 75 | 71 | 70 | 76 | 79 | 65 | 77 | 62 | 72 |
(1)画出散点图;
(2)求y对x的回归方程.