某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分
10
11
12
13
14
15
等候人数y/人
23
25
26
29
28
31
 
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取2组数据,求选取的这组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:1 | 题型:解答题 | 难度:0.99
某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如表1

为了研究计算方便,工作人员将上表的数据进行了处理,令得到表2:

(1)求:关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于的回归方程;
(3)用所求回归方程预测到2019年年底,该地储蓄存款额可达多少?
附:对于线性回归方程,其中
当前题号:2 | 题型:解答题 | 难度:0.99
己知某产品的销售额与广告费用之间的关系如下表:
(单位:万元)
0
1
2
3
4
(单位:万元)
10
15
20
30
35
 
若求得其线性回归方程为,则预计当广告费用为6万元时的销售额为
A.42万元B.45万元C.48万元D.51万元
当前题号:3 | 题型:单选题 | 难度:0.99
某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量(单位:度)与气温(单位:℃)之间的关系,随机选取了4天的用电量与当天气温,由表中数据得线性回归方程:,则由此估计:当气温为2℃时,用电量约为(   )
(单位:℃)
17
14
10

(单位:度)
24
34
38
64
 
A.56度B.62度C.64度D.68度
当前题号:4 | 题型:单选题 | 难度:0.99
随着自媒体直播平台的迅猛发展,直播平台上涌现了许多知名三农领域创作者,通过直播或视频播放,帮助当地农民在直播平台上销售了大量的农产品,促进了农村的经济发展,当地农业与农村管理部门对近几年的某农产品年产量进行了调查,形成统计表如下:
年份






年份代码






年产量(万吨)






 
(1)根据表中数据,建立关于的线性回归方程
(2)根据线性回归方程预测年该地区该农产品的年产量;
(3)从年到年的年年产量中随机选出年的产量进行具体调查,求选出的年中恰有一年的产量小于万吨的概率.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.(参考数据:
当前题号:5 | 题型:解答题 | 难度:0.99
某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:

2
4
5
6
8

30
40
60
50
70
 
(1)根据表中提供的数据,用最小二乘法求出的回归方程:
(2)预测销售额为115万元时,大约需要多少万元的广告费.
(参考公式:回归方程为其中.)
当前题号:6 | 题型:解答题 | 难度:0.99