- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为了提高工效,需分析该公司的产量
台
与所用时间
小时
之间的关系,为此做了四次统计,所得数据如下:
求出y关于x的线性回归方程
;
预测生产10台产品需要多少小时?




产品台数![]() ![]() | 2 | 3 | 4 | 5 |
所用时间![]() ![]() | ![]() | 3 | 4 | ![]() |



采集到两个相关变量
,
的四组数据发别为(3,2.5),(4,m),(5,4),(6,4.5),根据这些数据,求得
关于
的线性回归方程为
,则
______.






经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间
与数学成绩
进行数据收集如下:

由样本中样本数据求得回归直线方程为
,则点
与直线
的位置关系是( )



由样本中样本数据求得回归直线方程为



A.![]() | B.![]() |
C.![]() | D.![]() ![]() |
某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温


日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温![]() | 9 | 10 | 12 | 11 | 8 |
销量![]() | 23 | 25 | 30 | 26 | 21 |
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程

(参考公式:

假设某种设备使用的年限
(年)与所支出的维修费用
(万元)有以下统计资料:
若由资料知
对
呈线性相关关系.试求:
(1)求
;
(2)线性回归方程
;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算
的值时,可根据以下公式:


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
维修费用![]() | 2 | 4 | 5 | 6 | 7 |
若由资料知


(1)求

(2)线性回归方程

(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算


某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本
(元)与生产该产品的数量
(千件)有关,经统计得到如下数据:
根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型
和指数函数模型
分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为
,
与
的相关系数
.
参考数据(其中
):
(1)用反比例函数模型求
关于
的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
,相关系数
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
![]() | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型






参考数据(其中

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.5 | 61.4 | 0.135 |
(1)用反比例函数模型求


(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据







某电子科技公司由于产品采用最新技术,销售额不断增长,最近
个季度的销售额数据统计如下表(其中
表示
年第一季度,以此类推):
(1)公司市场部从中任选
个季度的数据进行对比分析,求这
个季度的销售额都超过
千万元的概率;
(2)求
关于
的线性回归方程,并预测该公司
的销售额.
附:线性回归方程:
其中
,
参考数据:
.



季度 | ![]() | ![]() | ![]() | ![]() | ![]() |
季度编号x | ![]() | ![]() | ![]() | ![]() | ![]() |
销售额y(百万元) | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)公司市场部从中任选



(2)求



附:线性回归方程:



参考数据:
