- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有一个食品商店为了调查气温对热饮销售的影响,经过调查得到关于卖出的热饮杯数与当天气温的数据如下表,绘出散点图如下.通过计算,可以得到对应的回归方程
=-2.352x+147.767,根据以上信息,判断下列结论中正确的是( )



摄氏温度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热饮杯数 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.气温与热饮的销售杯数之间成正相关 |
B.当天气温为2℃时,这天大约可以卖出143杯热饮 |
C.当天气温为10℃时,这天恰卖出124杯热饮 |
D.由于x=0时,![]() |
某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸
之间满足关系式
为大于
的常数),现随机抽取6件合格产品,测得数据如下:

对数据作了处理,相关统计量的值如下表:

(1)根据所给数据,求
关于
的回归方程(提示:由已知,
与
呈线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品,现从抽取的6件合格产品中再任选3件,求恰好取得两件优等品的概率.
(附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
)





对数据作了处理,相关统计量的值如下表:

(1)根据所给数据,求




(2)按照某项指标测定,当产品质量与尺寸的比在区间

(附:对于一组数据



如图是某台大型设备使用时间
(单位:年)与维护费用
(单位:千元)的散点图.

(1)根据散点图,求
关于
的回归方程
;
(2)如果维护费用超过120千元,就需要更换设备,那么根据(1)中模型的预测,估计该设备最多可以使用多少年?
附:①参考数据:
,
=63;
②一组数据
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.



(1)根据散点图,求



(2)如果维护费用超过120千元,就需要更换设备,那么根据(1)中模型的预测,估计该设备最多可以使用多少年?
附:①参考数据:


②一组数据




已知x,y之间的数据如下表所示,则y与x之间的线性回归方程过点( )
x | 1.08 | 1.12 | 1.19 | 1.28 |
y | 2.25 | 2.37 | 2.40 | 2.55 |
A.(0,0) | B.(1.1675,0) | C.(0,2.3925) | D.(1.1675,2.3925) |
根据如下样本数据得到的回归方程为
.若
=7.9,则x每增加1个单位,y就( )


x | 3 | 4 | 5 | 6 | 7 |
y | 4.0 | 2.5 | 0.5 | 0.5 | 2.0 |
A.增加1.4个单位 | B.减少1.4个单位 |
C.增加1.2个单位 | D.减少1.2个单位 |
某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表如下:表中数据得回归直线方程
中的
=-2,预测当气温为-4℃时,用电量为________.


气温(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
下列说法错误的是( )
A.回归直线过样本点的中心![]() |
B.线性回归方程对应的直线![]() ![]() ![]() ![]() ![]() |
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高 |
D.在回归分析中,![]() ![]() ![]() ![]() |
某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y如下表:

数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
.
,
.

数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数



有下列关系:
①人的年龄与他(她)拥有的财富之间的关系;
②学生与他(她)的学号之间的关系;
③森林中的同一种树木,其断面直径与高度之间的关系;
④曲线上的点与该点的坐标之间的关系.
其中有相关关系的是__________ .(填上你认为正确的所有序号)
①人的年龄与他(她)拥有的财富之间的关系;
②学生与他(她)的学号之间的关系;
③森林中的同一种树木,其断面直径与高度之间的关系;
④曲线上的点与该点的坐标之间的关系.
其中有相关关系的是