- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- + 极差、方差、标准差
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司统计了2010~2018年期间公司年收的增加值
(万元)以及相应的年增长率
,所得数据如下所示:
(1)通过散点图可知,可用线性回归模型拟合2010~2014年
与
的关系;
①求2010~2014年这5年期间公司年利润的增加值的平均数
;
②求
关于
的线性回归方程
;
(2)从哪年开始连续三年公司利润增加值的方差最大?(不需要说明理由)
附:参考公式:回归直线方程
中的斜率和截距的最小二乘估计公式分别为
,
.


年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
代码![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
增加值![]() | 1555 | 2100 | 2220 | 2740 | 3135 | 3563 | 4041 | 5494.4 | 6475 |
增长率![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)通过散点图可知,可用线性回归模型拟合2010~2014年


①求2010~2014年这5年期间公司年利润的增加值的平均数

②求



(2)从哪年开始连续三年公司利润增加值的方差最大?(不需要说明理由)
附:参考公式:回归直线方程



某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求两个样本的平均数;
(2)求两个样本的方差和标准差;
(3)试分析比较两个班的学习情况.
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求两个样本的平均数;
(2)求两个样本的方差和标准差;
(3)试分析比较两个班的学习情况.
甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是( ).
A.s1>s2 | B.s1=s2 | C.s1<s2 | D.不确定 |






A.频率 | B.平均数 | C.独立性检验 | D.方差 |
下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③设随机变量
服从正态分布
,若
,则
;
④对分类变量
与
的随机变量
的观测值
来说,
越小,判断“
与
有关系”的把握越大.其中正确的命题序号是( )
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③设随机变量




④对分类变量







A.①② | B.①②③ | C.①③④ | D.②③④ |