- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学). 现用分层抽样方法(按A类、B类分两层)从该年级学生中共抽查100名同学,测得这100名同学的身高(单位:
)频率分布直方图如图:

(Ⅰ)以同一组数据常用该组区间的中点值(例如区间
的中点值为165)作为代表,计算这100名学生身高数据的平均值;
(Ⅱ)如果以身高不低于
作为达标的标准,对抽取的100名学生,得到以下列联表:
完成上表,并判断是否有
的把握认为体育锻炼与身高达标有关系(
值精确到0.01)?
参考公式:
参考数据:


(Ⅰ)以同一组数据常用该组区间的中点值(例如区间

(Ⅱ)如果以身高不低于

| 身高达标 | 身高不达标 | 总计 |
积极参加体育锻炼 | 40 | | |
不积极参加体育锻炼 | | 15 | |
总计 | | | 100 |
完成上表,并判断是否有


参考公式:

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分两层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:
表1:
表2:
(1)求x,y的值;
(2)在答题纸上完成频率分布直方图;并根据频率分布直方图,估计该工厂B类工人生产能力的平均数(同一组中的数据用该区间的中点值作代表)和中位数.(结果均保留一位小数)

表1:
生产能力分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 4 | 8 | x | 5 | 3 |
表2:
生产能力分组 | ![]() | ![]() | ![]() | ![]() |
人数 | 6 | y | 36 | 18 |
(1)求x,y的值;
(2)在答题纸上完成频率分布直方图;并根据频率分布直方图,估计该工厂B类工人生产能力的平均数(同一组中的数据用该区间的中点值作代表)和中位数.(结果均保留一位小数)


为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:

(Ⅰ)图中m的值;
(II)估计全年级本次考试的平均分;
(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.

(Ⅰ)图中m的值;
(II)估计全年级本次考试的平均分;
(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.
某学校1200名高三学生参加当地教育局举办的人身安全测试(满分100分),将所得成绩统计如图所示,其中
.

(1)求测试分数在
的学生人数;
(2)求这1200名高三学生成绩的平均数以及中位数.


(1)求测试分数在

(2)求这1200名高三学生成绩的平均数以及中位数.
苹果可按果径
(最大横切面直径,单位:
.)分为五个等级:
时为1级,
时为2级,
时为3级,
时为4级,
时为5级.不同果径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径
均在
内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.

(1)假设
服从正态分布
,其中
的近似值为果径的样本平均数
(同一组数据用该区间的中点值代替),
,试估计采摘的10000个苹果中,果径
位于区间
的苹果个数;
(2)已知该果园今年共收获果径在80以上的苹果
,且售价为特级果12元
,一级果10元
,二级果9元
.设该果园售出这
苹果的收入为
,以频率估计概率,求
的数学期望.
附:若随机变量
服从正态分布
,则
,
,
.










(1)假设







(2)已知该果园今年共收获果径在80以上的苹果







附:若随机变量





某校为了了解学生每天平均课外阅读的时间(单位:分钟),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天课外阅读时间的频率分布直方图,如图所示,若每天课外阅读时间不超过30分钟的有45人.

(Ⅰ)求
,
的值;
(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).

(Ⅰ)求


(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).
某调研机构,对本地
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有
人为“低碳族”,该
人的年龄情况对应的频率分布直方图如图.

(1)根据频率分布直方图,估计这
名“低碳族”年龄的平均值,中位数;
(2)若在“低碳族”且年龄在
、
的两组人群中,用分层抽样的方法抽取
人,试估算每个年龄段应各抽取多少人?





(1)根据频率分布直方图,估计这

(2)若在“低碳族”且年龄在



为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

(1)估计这200名学生健康指数的平均数
和样本方差
(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数
近似服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
①求
;
②已知该市高三学生约有10000名,记体质健康指数在区间
的人数为
,试求
.
附:参考数据
,
若随机变量
服从正态分布
,则
,
,
.

(1)估计这200名学生健康指数的平均数


(2)由频率分布直方图知,该市学生的健康指数






①求

②已知该市高三学生约有10000名,记体质健康指数在区间



附:参考数据

若随机变量





某校高二年组组了一次专题培训,从参加考试的学生中出
名学生,将其成(均为整数)分成为
,
,
,
,
分为
组,得到如图所示的率分布直方图:

(1)求分数值不低于
分的人数;
(2)计这次考试的平均数和中位数(保留两位小数);
(3)已知分数在
内的男性与女性的比为
,为提高他们的成绩,现从分数在
的人中随机抽取
人进行补课,求这
人中只有一位男性的概率.








(1)求分数值不低于

(2)计这次考试的平均数和中位数(保留两位小数);
(3)已知分数在





十九大提出,坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用互联网电商渠道进行销售,为了更好地销售,现从该村的蜜柚上随机摘下了100个蜜柚进行测重,其质量分布在区间[1500,3000]内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
(1)按分层抽样的方法从质量落在
的蜜柚中随机抽取5个,再从这5个蜜柚中随机抽2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚待出售,某电商提出两种收购方案:
请你通过计算为该村选择收益最好的方案.
(1)按分层抽样的方法从质量落在


(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元/千克收购; |
B.低于2250克的蜜柚以60元/个收购,高于或等于2250的以80元/个收购. |
