- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校从参加高二级期中考试的学生中抽出60名学生,将其成绩(均为整数)分成六段
,
,…,
.后画出如下部分频率分布直方图.观察图形的信息,回答下列题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分以上为及格);若统计方法中,同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)从成绩是
分的学生中选两人,求他们在同一分数段的概率.



(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分以上为及格);若统计方法中,同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)从成绩是

某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗生长情况,从这批树苗中随机测量了其中50棵树苗的高度(单位:厘米),把这些高度列成了如下的频率分布表:
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?
组别 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 2 | 3 | 14 | 15 | 12 | 4 |
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段
,
,…
后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在
的概率.




(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在

某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了了解树苗生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米).把这些高度列成了如下的频率分布表:

(1)在这批树苗中任取一棵,其高度不低于80厘米的概率大约是多少?
(2)这批树苗的平均高度大约是多少?(用各组的中间值代替各组数据的平均值)
(3)为了进一步获得研究资料,若从
组中移出一棵树苗,从
组中移出两棵树苗进行试验研究,则
组中的树苗
和
组中的树苗
同时被移出的概率是多少?

(1)在这批树苗中任取一棵,其高度不低于80厘米的概率大约是多少?
(2)这批树苗的平均高度大约是多少?(用各组的中间值代替各组数据的平均值)
(3)为了进一步获得研究资料,若从






某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20.
(Ⅰ)请补全频率分布直方图;
(Ⅱ)由此估计该班的平均分;
(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为
,求
的概率.
(Ⅰ)请补全频率分布直方图;
(Ⅱ)由此估计该班的平均分;
(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为



某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是6.
(1)样本中净重大于或等于98克并且小于104克的产 品的个数是多少?
(2)估计该批产品净重的平均值.
(3)若从净重小于100克的样品中抽取两个产品,求两个样品净重都在[98,100)的概率.
(1)样本中净重大于或等于98克并且小于104克的产 品的个数是多少?
(2)估计该批产品净重的平均值.
(3)若从净重小于100克的样品中抽取两个产品,求两个样品净重都在[98,100)的概率.

某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:

(Ⅰ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅱ)假设在
段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率

(Ⅰ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅱ)假设在

某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50)、[50,60)、…、[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100)记2分,求抽取结束后的总记分至少为2分的概率.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100)记2分,求抽取结束后的总记分至少为2分的概率.

城市的空气质量以其空气质量指数
(为整数)衡量,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.根据空气质量指数
的不同,可将空气质量分级如下表:
为了了解某城市2011年的空气质量情况,现从该城市一年空气质量指数
的监测数据库中,用简单随机抽样方法抽取30个空气质量指数
进行分析,得到如下数据:

(Ⅰ)完成下面频率分布直方图,并求质量指数API的中位数大小;
(Ⅱ)估计该城市一年中空气质量为优良的概率;
(Ⅲ)请你依据所给数据和上述分级标准,对该城市的空气质量给出一个简短评价.


API | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 251~300 | >300 |
状况 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
为了了解某城市2011年的空气质量情况,现从该城市一年空气质量指数


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 2 | 1 | 4 | 6 | 10 | 5 | 2 |

(Ⅰ)完成下面频率分布直方图,并求质量指数API的中位数大小;
(Ⅱ)估计该城市一年中空气质量为优良的概率;
(Ⅲ)请你依据所给数据和上述分级标准,对该城市的空气质量给出一个简短评价.