- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
党的十九大报告指出,要推进绿色发展,倡导“简约知适度、绿色低碳”的生活方式,开展创建“低碳生活,绿色出行”等行动.在这一号召下,越来越多的人秉承“能走不骑,能骑不坐,能坐不开”的出行理念,尽可能采取乘坐公交车骑自行车或步行等方式出行,减少交通拥堵,共建清洁、畅通高效的城市生活环境.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.
(I)若从被抽查的该月骑车次数在
的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在
之间,另一名幸运者该月骑车次数在
之间的概率;
(Ⅱ)用样本估计总体的思想,解决如下问题:
(
)估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;
(
) 若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
参考数据:

![]() 人数 年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
18岁至31岁 | 8 | 12 | 20 | 60 | 140 | 150 |
32岁至44岁 | 12 | 28 | 20 | 140 | 60 | 150 |
45岁至59岁 | 25 | 50 | 80 | 100 | 225 | 450 |
60岁及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.
(I)若从被抽查的该月骑车次数在



(Ⅱ)用样本估计总体的思想,解决如下问题:
(

(

参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为me,众数为m0,平均数为
,则( )



A.me=m0=![]() | B.m0<![]() |
C.me<m0<![]() | D.m0<me<![]() |
甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为
甲,
乙,则
甲>
乙的概率是________.





某校想了解高二数学成绩在学业水平考试中的情况,从中随机抽出
人的数学成绩作为样本并进行统计,频率分布表如下表所示.
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取
人进行座谈,若抽取的这
人中,恰好有
人成绩为
分,
人成绩为
分,
人成绩为
分,
人成绩为
分,求这
人数学成绩的方差;
(3)从
人的样本中,随机抽取测试成绩在
内的两名学生,设其测试成绩分别为
,
.
(i)求事件“
”的概率;
(ii)求事件“
”的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | ![]() | ![]() |
第2组 | ![]() | ![]() | ![]() |
第3组 | ![]() | ![]() | ![]() |
第4组 | ![]() | ![]() | ![]() |
第5组 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() |
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取











(3)从




(i)求事件“

(ii)求事件“

某教育集团为了办好人民满意的教育,每年底都随机邀请
名学生家长代表对集团内甲、乙两所学校进行人民满意的民主测评(满意度最高分
,最低分
,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的数据如下:
甲校:
;
乙校:
.
(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数;
(2)分别计算甲、乙两所学校去年人民满意度的方差;
(3)根据以上数据你认为这两所学校哪所学校人民满意度比较好?



甲校:

乙校:

(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数;
(2)分别计算甲、乙两所学校去年人民满意度的方差;
(3)根据以上数据你认为这两所学校哪所学校人民满意度比较好?
为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、 乙两单位中各随机抽取了5名职工的成绩,如下表所示:
根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定?
甲单位职工的成绩(分) | 87 | 88 | 91 | 91 | 93 |
乙单位职工的成绩(分) | 85 | 89 | 91 | 92 | 93 |
根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定?
记5个互不相等的正实数的平均值为
,方差为
,去掉其中某个数后,记余下4个数的平均值为
,方差为
,则下列说法中一定正确的是( )




A.若![]() ![]() | B.若![]() ![]() |
C.若![]() ![]() | D.若![]() ![]() |
为提升教师专业功底,引领青年教师成长,某市教育局举行了全市“园丁杯”课堂教学比赛.在这次比赛中,通过采用录像课评比的片区预赛,有
共10位选手脱颖而出进入全市决赛.决赛采用现场上课形式,从学科评委库中采用随机抽样选代号
的7名评委,规则是:选手上完课,评委当场评分,并从7位评委评分中去掉一个最高分,去掉一个最低分,根据剩余5位评委的评分,算出平均分作为该选手的最终得分.记评委
对某选手评分排名与该选手最终排名的差的绝对值为“评委
对这位选手的分数排名偏差” (
).排名规则:由高到低依次排名,如果选手分数一样,认定名次并列(如:选手
分数一致排在第二,则认为他们同属第二名,没有第三名,接下来分数为第四名).七位评委评分情况如图所示:
(Ⅰ)根据最终评分表,填充如下表格,并完成评委4和评委5对十位选手的评分的茎叶图;

(Ⅱ)试根据评委对各选手的排名偏差的平方和,判断评委4和评委5在这次活动中谁评判更准确.






(Ⅰ)根据最终评分表,填充如下表格,并完成评委4和评委5对十位选手的评分的茎叶图;

(Ⅱ)试根据评委对各选手的排名偏差的平方和,判断评委4和评委5在这次活动中谁评判更准确.