- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
银川市展览馆22天中每天进馆参观的人数如下:
180 158 170 185 189 180 184 185 140 179 192
185 190 165 182 170 190 183 175 180 185 148
计算参观人数的中位数、众数、平均数、标准差(保留整数部分).
180 158 170 185 189 180 184 185 140 179 192
185 190 165 182 170 190 183 175 180 185 148
计算参观人数的中位数、众数、平均数、标准差(保留整数部分).
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
某地在国庆节
天假期中的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这
天的认购量与成交量作出如下判断:①成交量的中位数为
;②认购量与日期正相关;③日成交量超过日平均成交量的有
天,则上述判断中正确的个数为( )






A.![]() | B.![]() | C.![]() | D.![]() |
某娱乐节目参赛选手分初赛培训、复赛三个阶段选拔,将50位参选手的初赛成绩(总分150分)分成[90,100),[100,110),[110,120),[120,130),[130,140)5组进行统计,得到如图所示的频率分布直方图.

(1)根据频率分析直方图,估算这50个选手初赛成绩的平均分,若节日组规定成绩大于或等于120分的选手可获得节目组组织的培训资格,120分以下(不包括120)的则被淘汰,求这50个人中获得培训资格的人数;
(2)节目组从获得培训资格的人员中选拔部分人员进入复赛.为增加节目的娱乐性,节目组提供了以下两种进入复赛的方式(每位选手只能选择其中一种)
第一种方式:利用分层抽样的方法抽取6名选手参加复赛;
第二种方式:每人最多有5次答题机会,累计答对3题或答错3题终止答题,答对3题可参加复赛
①已知甲的初赛成绩在[120,130)内,他答对每一个问题的概率为
,并且互相之间没有影响甲要想参加复赛,选择那种方式更有利?
②若甲选择第二种方式,求他在答题过程中答题个数X的分布列和数学期望.

(1)根据频率分析直方图,估算这50个选手初赛成绩的平均分,若节日组规定成绩大于或等于120分的选手可获得节目组组织的培训资格,120分以下(不包括120)的则被淘汰,求这50个人中获得培训资格的人数;
(2)节目组从获得培训资格的人员中选拔部分人员进入复赛.为增加节目的娱乐性,节目组提供了以下两种进入复赛的方式(每位选手只能选择其中一种)
第一种方式:利用分层抽样的方法抽取6名选手参加复赛;
第二种方式:每人最多有5次答题机会,累计答对3题或答错3题终止答题,答对3题可参加复赛
①已知甲的初赛成绩在[120,130)内,他答对每一个问题的概率为

②若甲选择第二种方式,求他在答题过程中答题个数X的分布列和数学期望.
某人沿固定路线开车上班,沿途共有
个红绿灯,他对过去
个工作日上班途中的路况进行了统计,得到了如表的数据:
若一路绿灯,则他从家到达公司只需用时
分钟,每遇一个红灯,则会多耗时
分钟,以频率作为概率的估计值
(1)试估计他平均每天上班需要用时多少分钟?
(2)若想以不少于
的概率在早上
点前(含
点)到达公司,他最晚何时要离家去公司?
(3)公司规定,员工应早上
点(含
点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款
元.因某些客观原因,在接下来的
个工作日里,他每天早上只能
从家出发去公司,求他因迟到而被罚款的期望.


上班路上遇见的红灯数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若一路绿灯,则他从家到达公司只需用时


(1)试估计他平均每天上班需要用时多少分钟?
(2)若想以不少于



(3)公司规定,员工应早上





如图统计了截止2019年年底中国电动车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )
中国电动车充电桩细分产品占比情况:

中国电动车充电桩细分产品保有量情况:(单位:万台)

中国电动车充电桩细分产品占比情况:

中国电动车充电桩细分产品保有量情况:(单位:万台)

A.私人类电动汽车充电桩保有量增长率最高的年份是2018年 |
B.公共类电动汽车充电桩保有量的中位数是25.7万台 |
C.公共类电动汽车充电桩保有量的平均数为23.12万台 |
D.从2017年开始,我国私人类电动汽车充电桩占比均超过![]() |
某电视台举办青年歌手大奖赛,有十名评委打分,已知甲、乙两名选手演唱后的得分如茎叶图如图所示.
(1)从统计学的角度,你认为甲与乙比较,演唱水平怎样?
(2)现场有三名点评嘉宾A,B,C,每位选手可以从中选两位接受其指导,若选手选每位点评嘉宾的可能性相等,求甲、乙两名选手选择的点评嘉宾恰有一人重复的概率.
计算下列各组数的平均数与方差:
(1)18.9,19.5,19.5,19.2,19,18.8,19.5;
(2)2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6.
(1)18.9,19.5,19.5,19.2,19,18.8,19.5;
(2)2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6.
甲、乙两人某次飞镖游戏中的成绩如下:甲:8,6,7,7,8,10,9,8,7,8; 乙:9,10,6,7,9,9,10,8,9,10.其中甲的成绩可用如图(1)所示的打点图(或点状图)表示,每个成绩上面的点的个数表示这个成绩出现的次数.在图(2)中作出乙的成绩的打点图,并由图写出关于甲、乙成绩比较的两个统计结论.

(1) (2)


(1) (2)