- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .
某校在一次学生演讲比赛中,共有7个评委,学生最后得分为去掉一个最高分和一个最低分的平均分.某学生所得分数为9.6,9.4,9.6,9.7,9.7,9.5,9.6,这组数据的众数是____,该学生最后得分为____.
一箱方便面共有50袋,用随机抽样方法从中抽取了10袋,并称其质量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60
(1)指出总体、个体、样本、样本容量;
(2)指出样本数据的众数、中位数、平均数;
(3)求样本数据的方差.
(1)指出总体、个体、样本、样本容量;
(2)指出样本数据的众数、中位数、平均数;
(3)求样本数据的方差.
随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值
和方差
;
(3)在(2)条件下,若用户的满意度评分在
之间,则满意度等级为“
级”.试应用样本估计总体的思想,估计该地区满意度等级为“
级”的用户所占的百分比是多少?(精确到
)
参考数据:
.

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值


(3)在(2)条件下,若用户的满意度评分在




参考数据:

在某次高中数学竞赛中,随机抽取90名考生,其分数如图所示,若所得分数的平均数,众数,中位数分别为
,
,
,则
,
,
的大小关系为( )








A.![]() | B.![]() | C.![]() | D.![]() |
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录了有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以
表示.
(
)若甲、乙两个小组的数学平均成绩相同,则
__________.
(
)乙组平均成绩超过甲组平均成绩的概率为__________.

(


(


若6名男生和9名女生身高(单位:
)的茎叶图如图,则男生的平均身高与女生身高的中位数分别为( )



A.181 166 | B.181 168 |
C.180 166 | D.180 168 |
某学校开展信息技术技能比赛,并从参赛学生中选
个参加全区信息技术技能大赛,经过
轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是
,
,则下列说法正确的是( )





A.![]() |
B.![]() |
C.![]() |
D.![]() |
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成
小块地,在总共
小块地中.随机选
小块地种植品种甲,另外
小块地种植品种乙.
(
)假设
,求第一大块地都种植品种甲的概率.
(
)试验时每大块地分成
小块.即
,试验结束后得到品种甲和品种乙在各个小块地上的每公顷产量(单位
)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?




(


(




品种甲 | ![]() | ![]() | ![]() | ![]() | ![]() |
品种乙 | ![]() | ![]() | ![]() | ![]() | ![]() |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
高三一班、二班各有6名学生参加学校组织的高中数学竞赛选拔考试,成绩如茎叶图所示.

(1)若一班、二班6名学生的平均分相同,求
值;
(2)若将竞赛成绩在
内的学生在学校推优时,分别赋1分,2分,3分,现在一班的6名参赛学生中取两名,求推优时,这两名学生赋分的和为4分的概率.

(1)若一班、二班6名学生的平均分相同,求

(2)若将竞赛成绩在
