- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

(1)图中纵坐标
处刻度不清,根据图表所提供的数据还原
;
(2)根据频率分布直方图估计该批电子元件寿命的平均数和中位数;
(3)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的个数记为m,从这m个元件中抽任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.

(1)图中纵坐标


(2)根据频率分布直方图估计该批电子元件寿命的平均数和中位数;
(3)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的个数记为m,从这m个元件中抽任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.
十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年
位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计
位农民的年平均收入
(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入
服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
.利用该正态分布,求:
(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的
的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了
位农民。若每个农民的年收人相互独立,问:这
位农民中的年收入不少于
千元的人数最有可能是多少?
附:参考数据与公式
则①
;②
;③
.


(1)根据频率分布直方图,估计


(2)由频率分布直方图,可以认为该贫困地区农民年收入







(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了



附:参考数据与公式

则①



样本中共有五个个体,其值分别是
,1,2,3,4,若样本的平均数是2,则样本的极差和标准差分别是( )

A.5和2 | B.5和![]() | C.4和2 | D.4和![]() |
某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
则下列结论正确的是( )
| 第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A.甲,乙,丙第三次月考物理成绩的平均数为86 |
B.在这三次月考物理成绩中,甲的成绩平均分最高 |
C.在这三次月考物理成绩中,乙的成绩最稳定 |
D.在这三次月考物理成绩中,丙的成绩方差最大 |
某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为
五个小组(所调查的芯片得分均在
内),得到如图所示的频率分布直方图,其中
.

(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).
(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.




(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).
(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.
上海地铁11号线是世界最长的地铁截至2019年9月28日,中国已开通地铁的城市有41个,按照地铁的全长排名,排在前四名的依次为上海
、北京
、广州
、南京
,则这四个城市的地铁全长的平均值为______
.





为选拔A,B两名选手参加某项比赛,在选拔测试期间,他们参加选拔的5次测试成绩(满分100分)记录如下:

(1)从A,B两人的成绩中各随机抽取一个,求B的成绩比A低的概率;
(2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.

(1)从A,B两人的成绩中各随机抽取一个,求B的成绩比A低的概率;
(2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.