- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两位同学在高三的5次月考中数学成绩用茎叶图表示如右图所示,若甲、乙两人的平均成绩分别是
,
,则下列叙述正确的是()




A.![]() | B.![]() |
C.![]() | D.![]() |
随机调查某学校50名学生在学校的午餐费,结果如表:
这50个学生的午餐费的平均值和方差分别是( )
餐费(元) | 6 | 7 | 8 |
人数 | 10 | 20 | 20 |
这50个学生的午餐费的平均值和方差分别是( )
A.7.2元,0.56元2 | B.7.2元,![]() | C.7元,0.6元2 | D.7元,![]() |
某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:

(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50。用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布
,则
,
,
.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从
到
)若掷出反面遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为P试证明
是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。

(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程







参考数据:若随机变量服从正态分布




(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从






对于一组数据xi(i=1,2,3,…,n),如果将它们改变为xi+C(i=1,2,3,…,n),其中C≠0,则下列结论正确的是( )
A.平均数与方差均不变 |
B.平均数变,方差保持不变 |
C.平均数不变,方差变 |
D.平均数与方差均发生变化 |
某市随机抽取部分企业调查年上缴税收情况,将所得数据绘制成如图的频率分布直方图.

(Ⅰ)根据频率分布直方图,估计该市企业年上缴税收的平均值;
(Ⅱ)以直方图中的频率作为概率,从该市企业中任选4个,这4个企业年上缴税收位于
(单位:万元)的个数记为X,求X的分布列和数学期望.

(Ⅰ)根据频率分布直方图,估计该市企业年上缴税收的平均值;
(Ⅱ)以直方图中的频率作为概率,从该市企业中任选4个,这4个企业年上缴税收位于

某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.

(1)求
的值;
(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差
和
,并由此比较两班学生的加工水平的稳定性.

(1)求

(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差


为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,
其中根据茎叶图能得到的统计结论的编号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,
其中根据茎叶图能得到的统计结论的编号为( )
A.①③ | B.①④ | C.②③ | D.②④ |
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9,B班5名学生得分为:6、7、8、9、10.
(1)请你判断A、B两个班中哪个班的问卷得分要稳定一些,并说明你的理由;
(2)求如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
(1)请你判断A、B两个班中哪个班的问卷得分要稳定一些,并说明你的理由;
(2)求如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.