- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某人5次上班途中所花的时间(单位:分钟,均为正整数)分别为x,y,10,11,9.已知这组数据的平均数为10,则它的极差不可能为( )
A.8 | B.4 | C.2 | D.1 |
目前,青蒿素作为一线抗疟药品得到大力推广某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了
株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了
株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:
(1)根据样本数据,试估计山下试验田青蒿素的总产量;
(2)记山上与山下两块试验田单株青蒿素产量的方差分别为
,
,根据样本数据,试估计
与
的大小关系(只需写出结论);
(3)从样本中的山上与山下青蒿中各随机选取
株,记这
株的产量总和为
,求
的概率.


编号位置 | ① | ② | ③ | ④ |
山上 | ![]() | ![]() | ![]() | ![]() |
山下 | ![]() | ![]() | ![]() | ![]() |
(1)根据样本数据,试估计山下试验田青蒿素的总产量;
(2)记山上与山下两块试验田单株青蒿素产量的方差分别为




(3)从样本中的山上与山下青蒿中各随机选取




有一组数据
,它们的平均数是10,若去掉其中最大的
,余下的数据的平均数为9,若去掉最小的
,余下的数据的平均数为11,则
关于
的表达式为________________,
关于
的表达式为______________.







如图所示茎叶图记录了甲乙两组各5名同学的数学成绩
甲组成绩中有一个数据模糊,无法确认,在图中以
表示
若两个小组的平均成绩相同,则下列结论正确的是( )





A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
大学的生活丰富多彩,很多学生除了学习本专业的必修课外,还会选择一些选修课来充实自已.甲同学调查了自己班上的
名同学学习选修课的情况,并作出如下表格:
(1)求甲同学班上人均学习选修课科数:
(2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上
,已知甲同学每次上课都会在
到
之间的任意时刻到达教室,乙同学每次上课都会在
到
之间的任意时刻到达教室,求连续
天内,甲同学比乙同学早到教室的天数
的分布列和数学期望.

每人选择选修课科数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求甲同学班上人均学习选修课科数:
(2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上







某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 ( )
A.3.5 | B.3 | C.-0.5 | D.-3 |
辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校理科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[100,110),[110,120),[120,130),[130,140),[140,150].

这100名学生语文成绩某些分数段的人数
与数学成绩相应分数段的人数
之比如下表所示:
(1)估计这100名学生语文成绩的平均数、方差(同一组数据用该区间的中点值作代表);
(2)从数学成绩在[130,150] 的学生中随机选取2人,该2人中数学成绩在[140,150]的人数为
,求
的数学期望
.

这100名学生语文成绩某些分数段的人数


分组区间 | [100,110) | [110,120) | [120,130) | [130,140) |
![]() | 1:2 | 2:1 | 3:4 | 1:1 |
(1)估计这100名学生语文成绩的平均数、方差(同一组数据用该区间的中点值作代表);
(2)从数学成绩在[130,150] 的学生中随机选取2人,该2人中数学成绩在[140,150]的人数为



一组数据3.65,3.68,3.68,3.72,3.73,3.75,3.80,3.80,3.81,3.83,则它们的75%、50%分位数分别为__________.