- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经销商经销某种农产品,在一个销售季度内,每售出
该产品获利润500元,未售出的产品,每
亏损300元,根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示,经销商为下一个销售季度购进了
的该农产品,以
(单位
:
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该产品的利润.

(1)根据直方图估计下一个销售季度市场需求量
的平均数、中位数和众数;
(2)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若
,则取
,且
的概率等于需求量落入
的频率,)求利润
的分布列和数学期望.








(1)根据直方图估计下一个销售季度市场需求量

(2)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若





某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:

(1)写出频率分布直方图中
的值,并做出甲种酸奶日销售量的频率分布直方图;
(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
。试比较
和
的大小
(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量

(1)写出频率分布直方图中

(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为



(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量
《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:

(1)求观众评分的平均数?
(2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?
(3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用
表示评分为10分的人数,求
的分布列及数学期望.

(1)求观众评分的平均数?
(2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?
(3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用


某工厂抽取了一台设备
在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值
,方差
;(同一组中的数据用该组区间的中点值作代表)
(2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布
,其中
近似为样本平均值,
近似为样本方差
.任取一个产品,记其质量指标值为
.若
,则认为该产品为一等品;
,则认为该产品为二等品;若
,则认为该产品为不合格品.已知设备
正常状态下每天生产这种产品1000个.
(i)用样本估计总体,问该工厂一天生产的产品中不合格品是否超过
?
(ii)某公司向该工厂推出以旧换新活动,补足50万元即可用设备
换得生产相同产品的改进设备
.经测试,设备
正常状态下每天生产产品1200个,生产的产品为一等品的概率是
,二等品的概率是
,不合格品的概率是
.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备
?
参考数据:①
;②
;③
,
.


(1)计算该样本的平均值


(2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布









(i)用样本估计总体,问该工厂一天生产的产品中不合格品是否超过

(ii)某公司向该工厂推出以旧换新活动,补足50万元即可用设备







参考数据:①




工厂抽取了在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值
,方差
;(同一组中的数据用该组区间的中点值作代表)
(2)若质量指标值在
之内为一等品.
(i)用样本估计总体,问该工厂一天生产的产品是否有
以上为一等品?
(ii)某天早上、下午分别抽检了50件产品,完成下面的表格,并根据已有数据,判断是否有
的把握认为一等品率与生产时间有关?
附:
.
参考数据:
.

(1)计算该样本的平均值


(2)若质量指标值在

(i)用样本估计总体,问该工厂一天生产的产品是否有

(ii)某天早上、下午分别抽检了50件产品,完成下面的表格,并根据已有数据,判断是否有

| 一等品个数 | 非一等品个数 | 总计 |
早上 | 36 | | 50 |
下午 | 26 | | 50 |
总计 | | | |
附:

![]() | 0.25 | 0.15 | 0.10 | 0.050 | 0.010 | 0.001 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
参考数据:

从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,且将纤维长度超过315mm的棉花定为一级棉花.设计了如下茎叶图:

(1)根据以上茎叶图,对甲、乙两种棉花的纤维长度作比较,写出两个统计结论(不必计算);
(2)从样本中随机抽取甲、乙两种棉花各2根,求其中恰有3根一级棉花的概率
(3)用样本估计总体,将样本频率视为概率,现从甲、乙两种棉花中各随机抽取1根,求其中一级棉花根数X的分布列及数学期望.

(1)根据以上茎叶图,对甲、乙两种棉花的纤维长度作比较,写出两个统计结论(不必计算);
(2)从样本中随机抽取甲、乙两种棉花各2根,求其中恰有3根一级棉花的概率
(3)用样本估计总体,将样本频率视为概率,现从甲、乙两种棉花中各随机抽取1根,求其中一级棉花根数X的分布列及数学期望.
某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.

若甲地区和乙地区用户满意度评分的中位数分别为m1,m2;平均数分别为s1,s2,则下面正确的是( )

若甲地区和乙地区用户满意度评分的中位数分别为m1,m2;平均数分别为s1,s2,则下面正确的是( )
A.m1>m2,s1>s2 | B.m1>m2,s1<s2 |
C.m1<m2,s1<s2 | D.m1<m2,s1>s2 |
2019年4月26日,铁人中学举行了盛大的成人礼.仪式在《相信我们会创造奇迹》的歌声中拉开序幕,庄严而神圣的仪式感动了无数家长,4月27日,铁人中学官方微信发布了整个仪式精彩过程,几十年众志成城,数十载砥砺奋进,铁人中学正在创造着一个又一个奇迹.官方微信发布后,短短几个小时点击量就突破了万人,收到了非常多的精彩留言.学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:

(Ⅰ)求这100位留言者年龄的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,留言者年龄
服从正态分布
,其中
近似为样本均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ii)学校从年龄在
和
的留言者中,按照分层抽样的方法,抽出了7人参加“精彩留言”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间
的人数是
,求变量
的分布列和数学期望.附:
,若
,则
,
.


(Ⅰ)求这100位留言者年龄的样本平均数


(Ⅱ)由频率分布直方图可以认为,留言者年龄






(ⅰ)利用该正态分布,求

(ii)学校从年龄在









地震、海啸、洪水、森林大火等自然灾害频繁出现,紧急避险常识越来越引起人们的重视.某校为了了解学生对紧急避险常识的了解情况,从高一年级和高二年级各选取100名同学进行紧急避险常识知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按
,
分组,得到的频率分布直方图.

(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;
(Ⅱ)完成下面
列联表,并回答是否有
的把握认为“两个年级学生对紧急避险常识的了解有差异”?
附:
临界值表:



(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;
(Ⅱ)完成下面


| 成绩小于60分人数 | 成绩不小于60分人数 | 合计 |
高一年级 | | | |
高二年级 | | | |
合计 | | | |
附:

临界值表:
![]() | 0.10 | 0.05 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |