- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
按照国际乒联的规定,标准的乒乓球在直径符合条件下,重量为2.7克,其重量的误差在区间
内就认为是合格产品,在正常情况下样本的重量误差
服从正态分布.现从某厂生产的一批产品中随机抽取10件样本,其重量如下:
2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8
(1)计算上述10件产品的误差的平均数
及标准差
;
(2)①利用(1)中求的平均数
,标准差
,估计这批产品的合格率能否达到
;
②如果产品的误差服从正态分布
,那么从这批产品中随机抽取10件产品,则有不合格产品的概率为多少.(附:若随机变量
服从正态分布
,则
,
,
.
用0.6277,
用0.9743分别代替计算)


2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8
(1)计算上述10件产品的误差的平均数


(2)①利用(1)中求的平均数



②如果产品的误差服从正态分布








某小学为了解四年级学生的家庭作业用时情况,从本校四年级随机抽取了一批学生进行调查,并绘制了学生作业用时的频率分布直方图,如图所示.

(1)估算这批学生的作业平均用时情况;
(2)作业用时不能完全反映学生学业负担情况,这与学生自身的学习习惯有很大关系如果用时四十分钟之内评价为优异,一个小时以上为一般,其它评价为良好.现从优异和良好的学生里面用分层抽样的方法抽取300人,其中女生有90人(优异20人).请完成列联表,并根据列联表分析能否在犯错误的概率不超过0.05的前提下认为学习习惯与性别有关系?
附:
,其中

(1)估算这批学生的作业平均用时情况;
(2)作业用时不能完全反映学生学业负担情况,这与学生自身的学习习惯有很大关系如果用时四十分钟之内评价为优异,一个小时以上为一般,其它评价为良好.现从优异和良好的学生里面用分层抽样的方法抽取300人,其中女生有90人(优异20人).请完成列联表,并根据列联表分析能否在犯错误的概率不超过0.05的前提下认为学习习惯与性别有关系?
| 男生 | 女生 | 合计 |
良好 | | | |
优异 | | | |
合计 | | | |
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为
,它们的平均数为
,方差为
;其中扫码支付使用的人数分别为
,
,
,
,
,它们的平均数为
,方差为
,则
,
分别为( )












A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划.为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15分,平均得分为15分,得分的方差为46.3.执行训练后也统计了10场比赛的得分,成绩茎叶图如图所示:

(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;
(2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?

(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;
(2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?
某志愿者协会组织50名志愿者参加服务活动,对活动次数统计如表,则平均每人参加活动的次数为__________.
次数 | 2 | 3 | 4 | 5 |
人数 | 20 | 15 | 10 | 5 |
某企业有
,
两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从
,
两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:


(1)填写
列联表,并根据列联表判断有多大的把握认为这两个分厂的产品质量有差异?
(2)(i)从
分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从
分厂中随机抽取10件该产品,记抽到优质品的件数为
,求
的数学期望.
附:
,
.






(1)填写

| 优质品 | 非优质品 | 合计 |
![]() | | | |
![]() | | | |
合计 | | | |
(2)(i)从

(ii)将频率视为概率,从



附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |





某市体育局将从甲、乙、丙、丁四人中选一人参加全省100米仰泳比赛,现将他们最近集训的10次成绩(单位:秒)的平均数与方差制成表格如下:
根据表中的数据,应选哪位选手参加全省的比赛( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | ![]() | ![]() | ![]() | ![]() |
方差 | ![]() | ![]() | ![]() | ![]() |
根据表中的数据,应选哪位选手参加全省的比赛( )
A.甲 | B.乙 | C.丙 | D.丁 |
在去年的足球甲A联赛上,一队每场比赛平均失球数是1.6,全年比赛失球个数的标准差为1.2;二队每场比赛平均失球数是2.2,全年失球个数的标准差是0.5.下列说法正确的是__________;
(1)平均说来一队比二队防守技术好;
(2)二队比一队技术水平更稳定;
(3)一队有时表现很差,有时表现又非常好;
(4)二队很少不失球.
(1)平均说来一队比二队防守技术好;
(2)二队比一队技术水平更稳定;
(3)一队有时表现很差,有时表现又非常好;
(4)二队很少不失球.