- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在
上.将这些成绩分成六段
,
,…,
后得到如下部分频率分布直方图.

(Ⅰ)求抽出的60名学生中分数在
内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.





(Ⅰ)求抽出的60名学生中分数在

(Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.
某校高二分科分成四个班,某次数学测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人,抽取出来的所有学生的测试成绩统计结果的频率分布直方图如图所示,其中测试成绩在90~100分数段(包括90分但不包括100分)的纵坐标为0.005,人数为5人.
(1)求60分以上(包括60分)的人数所占的比例为多少?
(2)问各班被抽取的学生人数各为多少?
(1)求60分以上(包括60分)的人数所占的比例为多少?
(2)问各班被抽取的学生人数各为多少?

一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).
(1)直方图中a的值为多少?
(2)要再用分层抽样方法抽出80人作进一步调查,则在


某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.
(Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在
,
,
对应的小矩形的面积分别是
,且
.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在
的人数;
(2)若按照分层抽样,从年龄在
的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在
内的概率.






(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在

(2)若按照分层抽样,从年龄在


为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):

(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.

(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.
某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:


(1)求出
的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率

组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0 16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0 40 |
第4组 | [80,90) | ▓ | 0 08 |
第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |

(1)求出

(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率
某班
名学生在一次坐位体前屈测试中,成绩全部介于
与
之间,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于
且小于
认为良好,求该班在这次坐位体前屈测试中成绩良好的人数;
(Ⅱ)若成绩之差的绝对值大于
认为两位学生的身体韧度存在明显差异.现从第一、五组中随机取出两个成绩,求这两位学生的身体韧度存在明显差异的概率.






(Ⅰ)若成绩大于或等于


(Ⅱ)若成绩之差的绝对值大于


从高一年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.
利用频率分布直方图估计:

(1)这50名学生的众数P与中位数M(精确到0.1);
(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各应抽取多少名学生参加测试;
(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行心理测试,列出所有基本事件,并求:
(ⅰ)第1组中的甲同学和第2组中的A同学都没有被抽到的概率;
(ⅱ)第1组中至多有一个同学入选的概率.
利用频率分布直方图估计:

(1)这50名学生的众数P与中位数M(精确到0.1);
(2)若在第3、5组的学生中,用分层抽样抽取11名学生参加心理测试,请问:在第3、5组各应抽取多少名学生参加测试;
(3)为了进一步获得研究资料,学校决定再从第1组和第2组的学生中,随机抽取3名学生进行心理测试,列出所有基本事件,并求:
(ⅰ)第1组中的甲同学和第2组中的A同学都没有被抽到的概率;
(ⅱ)第1组中至多有一个同学入选的概率.