- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
小区统计部门随机抽查了区内
名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过
千元的顾客被定义为“网购红人”,网购金额不超过
千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为
.
(1)确定
的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这
名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定
人,若需从这
人中随机选取
人进行问卷调查,设
为选取的
人中“网购红人”的人数,求
的分布列和数学期望.




(1)确定

(2)为进一步了解这








上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在
岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为
,求
的分布列及数学期望.
分 组 (单位:岁) | 频数 | 频 率 |
![]() | 5 | 0.050 |
![]() | ① | 0.200 |
![]() | 35 | ② |
![]() | 30 | 0.300 |
![]() | 10 | 0.100 |
合 计 | 100 | 1.00 |

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在

(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为


为了解我区中学生的体质状况及城乡大学生的体质差异,对银川地区部分大学的学生进行了身高、体重和肺活量的抽样调查.现随机抽取100名学生,测得其身高情况如下表所示

(1)请在频率分布表中的①、②、③位置填上相应的数据,并补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)若按身高分层抽样,抽取20人参加2011年庆元旦“步步高杯”全民健身运动其中有3名学生参加越野比赛,记这3名学生中“身高低于170Ccm”的人数为


为加大西部开发步伐,国家支持西部地区选拔优秀“村官”深入农村开展工作,某市在2010年的“村官”选拔考试中随机抽取100名考生的成绩,按成绩分组,得到的频率分布表如下图所示:
(Ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成下面的频率分布直方图;

(Ⅱ)为了能够选拔出最优秀的“村官”到农村一线,市委组织部决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名考生进入第二轮面试,求第3,4,5组每组各抽取多少考生进入第二轮面试?
(Ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成下面的频率分布直方图;
组号 | 分组 | 频数 | 频率 |
第一组 | ![]() | 5 | 0.05 |
第二组 | ![]() | ① | 0.35 |
第三组 | ![]() | 30 | ② |
第四组 | ![]() | 20 | 0.20 |
第五组 | ![]() | 10 | 0.10 |
合计 | 100 | 1.00 |

(Ⅱ)为了能够选拔出最优秀的“村官”到农村一线,市委组织部决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名考生进入第二轮面试,求第3,4,5组每组各抽取多少考生进入第二轮面试?
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.

(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在

(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为


某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:



(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在
之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在
之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.



(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在


(3)根据频率分布直方图估计这次测试的平均分.
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,
,
,
后画出如下图的频率分布直方图,观察图形,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的合格率(60分及60分以上为合格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.




(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的合格率(60分及60分以上为合格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.
某校从参加高一年级期中考试的学生中随机抽取
名学生,将其数学成绩(均为整数)分成六段
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数).



(1)求分数在

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数).
某省对省内养殖场“瘦肉精”使用情况进行检查,在全省的养殖场随机抽取M个养殖场的猪作为样本,得到M个养殖场“瘦肉精”检测阳性猪的头数,根据此数据作出了频率分布表和频率分布直方图如下:

(1)求出表中M,P以及图中a的值.
(2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间
内的养殖场的个数.
(3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间
内的概率.
分组 | 频数 | 频率 |
![]() | 10 | 0.25 |
![]() | 24 | n |
![]() | m | P |
![]() | 2 | 0.05 |
合计 | M | 1 |

(1)求出表中M,P以及图中a的值.
(2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间

(3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间

对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:

(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间
内的概率

(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间
