- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照
分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)

(1)求频率分布直方图中的
的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)
(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.


(1)求频率分布直方图中的

(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.
某校从高一年级学生中随机抽取
名学生,将他们的期中考试数学成绩(满分
分,成绩均为不低于
分的整数)分成六段:
,
,…,
后得到如图的频率分布直方图.

(1)求图中实数
的值;
(2)若从数学成绩在
与
两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于
的概率.







(1)求图中实数

(2)若从数学成绩在



为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为




6组,得到如图所示的频率分布直方图.

(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在
内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在
内的人数为X,求X的分布列与数学期望.







(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在


高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:





.其中a,b,c成等差数列且
.物理成绩统计如表.(说明:数学满分150分,物理满分100分)

(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.









分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.
某中学随机选取了
名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求
的值及样本中男生身高在
(单位:
)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在
和
(单位:
)内的男生中任选两人,求这两人的身高都不低于
的概率. 

(Ⅰ)求



(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在





为了了解学生的学习情况,一次测试中,科任老师从本班中抽取了n个学生的成绩(满分100分,且抽取的学生成绩均在
内)进行统计分析.按照
,
,
,
,
,
的分组作出频率分布直方图和频数分布表.

(1)求n,a,x的值;
(2)在选取的样本中,从低于60分的学生中随机抽取两名学生,试问这两名学生在同一组的概率是多少?








频数分布表 | |
![]() | x |
![]() | 4 |
![]() | 10 |
![]() | 12 |
![]() | 8 |
![]() | 4 |
(1)求n,a,x的值;
(2)在选取的样本中,从低于60分的学生中随机抽取两名学生,试问这两名学生在同一组的概率是多少?
某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在
内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:

(1)算出第三组
的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)


(1)算出第三组

(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
学校从参加高二年级期末考试的学生中抽出一些学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),所得数据整理后,列出了如下频率分布表.

(1)在给出的样本频率分布表中,求A,B,C的值;
(2)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;
(3)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.
分组 | 频数 | 频率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合计 | C | 1 |

(1)在给出的样本频率分布表中,求A,B,C的值;
(2)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;
(3)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.
哈三中团委组织了“古典诗词”的知识竞赛,从参加考试的学生中抽出60名学生(男女各30名),将其成绩分成六组
,
,…,
,其部分频率分布直方图如图所示.

(Ⅰ)求成绩在
的频率,补全这个频率分布直方图,并估计这次考试的众数和中位数;
(Ⅱ)从成绩在
和
的学生中选两人,求他们在同一分数段的概率;
(Ⅲ)我们规定学生成绩大于等于80分时为优秀,经统计男生优秀人数为4人,补全下面表格,并判断是否有99%的把握认为成绩是否优秀与性别有关?





(Ⅰ)求成绩在

(Ⅱ)从成绩在


(Ⅲ)我们规定学生成绩大于等于80分时为优秀,经统计男生优秀人数为4人,补全下面表格,并判断是否有99%的把握认为成绩是否优秀与性别有关?
| 优秀 | 非优秀 | 合计 |
男 | 4 | | 30 |
女 | | | 30 |
合计 | | | 60 |

![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 5.024 | 6.635 | 7.879 | 10.828 |
4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”.

(1)求
的值并估计全校3000名学生中读书谜大概有多少名?(将频率视为概率)
(2)根据已知条件完成下面
的列联表,并据此判断是否有
的把握认为“读书谜”与性别有关?
附:
,
.

(1)求

(2)根据已知条件完成下面


| 非读书迷 | 读书迷 | 合计 |
男 | 40 | | |
女 | | 25 | |
合计 | | | |
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |