- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.

(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;
(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.

(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;
(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
表二
①先确定
再补全下列频率分布直方图(用阴影部分表示).
②就生产能力而言,
类工人中个体间的差异程度与
类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
③分别估计
类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).

(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
生产能力分组 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 4 | 8 | ![]() | 5 | 3 |
表二
生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 6 | ![]() | 36 | 18 |
①先确定

②就生产能力而言,


③分别估计

在2018年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前
名学生,并对这
名学生按成绩分组,第一组
,第二组
,第三组
,第四组
,第五组
.如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.

(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若
大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若
大学本次面试中有
,
,
三位考官,规定获得至少两位考官的认可即为面试成功,且各考官面试结果相互独立.已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
,
,
,求甲同学面试成功的概率;
②若
大学决定在这6名学生中随机抽取3名学生接受考官
的面试,第3组有
名学生被考官
面试,求
的分布列和数学期望.








(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若

①若







②若





某高校在2019的自主招生考试中,考生笔试成绩分布在
,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,得到的如下的频率分布表:

(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组各组抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.

组号 | 分数区间 | 频数 | 频率 |
1 | ![]() | 70 | 0.35 |
2 | ![]() | 10 | 0.05 |
3 | ![]() | ① | 0.20 |
4 | ![]() | 60 | 0.30 |
5 | ![]() | 20 | ② |

(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组各组抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.
为了了解某市民众对某项公共政策的态度,在该市随机抽取了50名市民进行调查,作出他们的月收入(单位:百元,范围:
)的频率分布直方图,同时得到他们月收入情况以及对该项政策赞成的人数统计表:

(1)求月收入在
内的频率,补全频率分布直方图,并在图中标出相应纵坐标;
(2)若从月收入在
内的被调查者中随机选取2人,求这2人对该项政策都不赞成的概率.


月收入 | 赞成的人数 |
![]() | 4 |
![]() | 8 |
![]() | 12 |
![]() | 5 |
![]() | 2 |
![]() | 2 |
(1)求月收入在

(2)若从月收入在

某中学从高三男生中随机抽取
名学生的身高,将数据整理,得到的频率分布表如下所示,
(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;

(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 5 | 0.050 |
第2组 | ![]() | | 0.350 |
第3组 | ![]() | 30 | |
第4组 | ![]() | 20 | 0.200 |
第5组 | ![]() | 10 | 0.100 |
合计 | ![]() | 1.00 |
(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;

(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.
最近上映的电影《后来的我们》引起了一阵热潮,为了了解大众对这部电影的评价,随机访问了50名观影者,根据这50人对该电影的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
,
,…,
,
.
(1)求频率分布直方图中
的值,并估计观影者对该电影评分不低于80的概率;
(2)由频率分布直方图估计评分的中位数(保留两位小数)与平均数;
(3)从评分在
的观影者中随机抽取2人,求至少有一人评分在
的概率.





(1)求频率分布直方图中

(2)由频率分布直方图估计评分的中位数(保留两位小数)与平均数;
(3)从评分在


某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间
(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为
,
,
,
,
,并绘制出如图所示的频率分布直方图.

(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;
(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.







(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;
(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.
当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.一媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取n名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名1民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.
组数 | 分组(单位:岁) | 频数 | 频率 |
1 | ![]() | 5 | 0.05 |
2 | ![]() | 20 | 0.20 |
3 | ![]() | a | 0.35 |
4 | ![]() | 30 | b |
5 | ![]() | 10 | 0.10 |
合计 | n | 1.00 |

(1)求出表中a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名1民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.
某部门在上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,单位:分钟)将统计数据按
,
,
,…,
分组,制成频率分布直方图如图所示:

(1)求a的值;
(2)记A表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”试估计A的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为
,求
的值,并直接写出
与
的大小关系.






(1)求a的值;
(2)记A表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”试估计A的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为



