- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(参考公式:
,其中
)
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(1)求图中

(2)根据已知条件完成下面

| 晋级成功 | 晋级失败 | 合计 |
男 | 16 | | |
女 | | | 50 |
合计 | | | |

(参考公式:


![]() | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为



某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图①②所示,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)之间的矩形的高;
(3)根据频率分布直方图,估计高三(1)班全体女生的数学平均成绩.(同一组中的数据用该组区间的中点值代表)
某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取了60名学生(其中初中组和高中组各30名)进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将每组学生去图书馆的次数分为5组:
,分别制作了如图所示的频率分布表和频率分布直方图.

(1)完成频率分布表,并求出频率分布直方图中
的值;
(2)在抽取的60名学生中,从在一个月内去图书馆的次数不少于16次的学生中随机抽取3人,并用
表示抽得的高中组的人数,求
的分布列和数学期望.

分组 | 人数 | 频率 |
![]() | 3 | |
![]() | 9 | |
![]() | 9 | |
![]() | | 0.2 |
![]() | | 0.1 |

(1)完成频率分布表,并求出频率分布直方图中

(2)在抽取的60名学生中,从在一个月内去图书馆的次数不少于16次的学生中随机抽取3人,并用


鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家
级旅游景区——龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)

(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为
,求
的分布列
(表二)
(参考公式:
,其中
.)

某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄 | 频数 | 频率 | 男 | 女 |
![]() | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合计 | 100 | 1.00 | 45 | 55 |

(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为


(表二)
| 50岁以上 | 50岁以下 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:
(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在
的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在

某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

(Ⅰ)求频率分布表中
,
的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在
内的人数
,求
的分布列及数学期望.

(Ⅰ)求频率分布表中


(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在



为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
寿命(h) | 频率 |
500600 | 0.10 |
600700 | 0.15 |
700800 | 0.40 |
800900 | 0.20 |
9001000 | 0.15 |
合计 | 1 |

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)

某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:

(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)

(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)