- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某小区抽取100户居民进行月用电量调查,发现其用电量都在50~350度之间,频率分布直方图如图所示:

(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.

(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.


⑴求全班人数及分数在
之间的频数;
⑵估计该班的平均分数,并计算频率分布直方图中
间的矩形的高;
⑶若要从分数在
之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.


⑴求全班人数及分数在

⑵估计该班的平均分数,并计算频率分布直方图中

⑶若要从分数在


(本小题满分12分)某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为
,
,
,
,
.

(Ⅰ)求频率分布直方图中
的值;
(Ⅱ)从统计学的角度说明学校是否需要推迟5分钟上课;
(Ⅲ)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在
上的概率.






(Ⅰ)求频率分布直方图中

(Ⅱ)从统计学的角度说明学校是否需要推迟5分钟上课;
(Ⅲ)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在

(多选题)某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在
元的学生有60人,则下列说法正确的是( )



A.样本中支出在![]() |
B.样本中支出不少于40元的人数为132 |
C.n的值为200 |
D.若该校有2000名学生,则定有600人支出在![]() |
某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读情况,现采用分层随机抽样的方法,从中抽取了100名学生,先统计了他们的课外阅读时间,然后按初中学生和高中学生分为两组,再将每组学生的阅读时间(单位:h)分为5组:
,
,
,
,
,并分别加以统计,得到如图所示的频率分布直方图,试估计该校所有学生中,阅读时间不小于30h的学生人数为_______.

初中学生组 高中学生组







初中学生组 高中学生组
某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.

(1)写出
的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(2)从阅读时间不足10个小时的样本学生中随机抽取3人,并用
表示其中初中生的人数,求
的分布列和数学期望.

(1)写出

(2)从阅读时间不足10个小时的样本学生中随机抽取3人,并用


兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间在购物广场的消费金额,所得数据如表所示,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.
(1)试确定
,
,
,
的值;
(2)补全频率分布直方图;

(3)用分层随机抽样的方法从消费金额在
,
和
的三个群体中共抽取7人进行问卷调查,则各小组应抽取几人?
消费金额/千元 | 人数 | 频率 |
![]() | 8 | 0.08 |
![]() | 12 | 0.12 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | 8 | 0.08 |
![]() | 7 | 0.07 |
合计 | 100 | 1.00 |
(1)试确定




(2)补全频率分布直方图;

(3)用分层随机抽样的方法从消费金额在



某班同学利用国庆节假期进行社会实践,在
年龄段的人群中随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:

(1)补全频率分布直方图,并求
,
,
的值;
(2)从
年龄段的“低碳族”中采用分层随机抽样的方法抽取6人,求从
年龄段的“低碳族”中应抽取的人数.


组别 | 分组 | “低碳族”的人数 | 占本组的频率 |
第1组 | ![]() | 120 | 0.6 |
第2组 | ![]() | 195 | ![]() |
第3组 | ![]() | 100 | 0.5 |
第4组 | ![]() | ![]() | 0.4 |
第5组 | ![]() | 30 | 0.3 |
第6组 | ![]() | 15 | 0.3 |

(1)补全频率分布直方图,并求



(2)从


共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(Ⅰ) 求图中
的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

(Ⅰ) 求图中

(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.
全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数
,数据统计如下:
(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成頻率分布直方图:

(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为
和
的监测数据中,用分层抽样的方法抽取
天,从中任意选取
天,求事件
“两天空气都为良”发生的概率.


空气质量指数![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据所给统计表和频率分布直方图中的信息求出


(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为




