- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
栀子原产于中国,喜温暖湿润、阳光充足的环境,较耐寒.叶,四季常绿;花,芳香素雅.绿叶白花,格外清丽.某地区引种了一批栀子作为绿化景观植物,一段时间后,从该批栀子中随机抽取
棵测量植株高度,并以此测量数据作为样本,得到该样本的频率分布直方图(单位:
),其中不大于
(单位:
)的植株高度茎叶图如图所示.


(1)求植株高度频率分布直方图中
的值;
(2)在植株高度频率分布直方图中,同一组中的数据用该区间的中点值代表,植株高度落入该区间的频率作为植株高度取该区间中点值的频率,估计这批栀子植株高度的平均值.






(1)求植株高度频率分布直方图中

(2)在植株高度频率分布直方图中,同一组中的数据用该区间的中点值代表,植株高度落入该区间的频率作为植株高度取该区间中点值的频率,估计这批栀子植株高度的平均值.
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求
的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | ![]() |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | ![]() | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求

(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.

(I)求
的值;
(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;
(Ⅲ)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在
的概率.


(I)求

(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;
(Ⅲ)若按照分层抽样从



某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.
在黄陵中学举行的数学知识竞赛中,将高二两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.这两个班参赛的学生人数是( )


A.80 | B.90 |
C.100 | D.120 |
某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取
株作为样本进行研究.株高在
及以下为不良,株高在
到
之间为正常,株高在
及以上为优等.下面是这
个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:

(1)求
的值并在答题卡的附图中补全频率分布直方图;
(2)通过频率分布直方图估计这
株株高的中位数(结果保留整数);
(3)从育种基地内这种品种的种株中随机抽取2株,记
表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量
的分布列(用最简分数表示).







(1)求

(2)通过频率分布直方图估计这

(3)从育种基地内这种品种的种株中随机抽取2株,记


涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的
名市民中,随机抽取
名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
(1)求频数分布表中
、
的值,并补全频率分布直方图;
(2)在抽取的这
名市民中,从年龄在
、
内的市民中用分层抽样的方法抽取
人参加华为手机宣传活动,现从这
人中随机选取
人各赠送一部华为手机,求这
人中恰有
人的年龄在
内的概率.



分组(岁) | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
合计 | ![]() |
(1)求频数分布表中


(2)在抽取的这









某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;

(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
=86,
=64,
(xi-
)(yi-
)=4698,
(xi-
)2=5524,
≈0.85.求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
=
,
=
-
.

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;

(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩分组 | [50,60﹚ | [60,70﹚ | [70,80﹚ | [80,90﹚ | [90,100﹚ | [100,110﹚ | [110,120] |
频数 | | | | | | | |

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:








附:回归直线方程的斜率和截距的最小二乘估计公式分别为:





节能减排以来,兰州市100户居民的月平均用电量
单位:度
,以
分组的频率分布直方图如图.

求直方图中x的值;
求月平均用电量的众数和中位数;
估计用电量落在
中的概率是多少?








随着智能手机的普及,网络搜题软件走进了生活,有教育工作者认为,网搜答案可以起到帮助人们学习的作用,但对多数学生来讲,过度网搜答案容易养成依赖心理,对学习能力造成损害.为了了解学生网搜答案的情况,某学校对学生一月内进行网搜答案的次数进行了问卷调查,并从参与调查的学生中抽取了男、女生各100人进行抽样分析,制成如下频率分布直方图:

记事件“男生1月内网搜答案次数不高于30次”为
,根据频率分布直方图得到
的估计值为0.65
(1)求
的值;
(2)若一学生在1月内网搜答案次数超过50次,则称该学生为“依赖型”,现从样本内的“依赖型”学生中,抽取3人谈话,求抽取的女生人数X的分布列和数学期望.

记事件“男生1月内网搜答案次数不高于30次”为


(1)求

(2)若一学生在1月内网搜答案次数超过50次,则称该学生为“依赖型”,现从样本内的“依赖型”学生中,抽取3人谈话,求抽取的女生人数X的分布列和数学期望.