- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

(1)求频率分布表中n,p的值,并估计该组数据的中位数(保留l位小数);
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 5 | 0.050 |
第2组 | ![]() | n | 0.350 |
第3组 | ![]() | 30 | p |
第4组 | ![]() | 20 | 0.200 |
第5组 | ![]() | 10 | 0.100 |
合计 | | 100 | 1.000 |

(1)求频率分布表中n,p的值,并估计该组数据的中位数(保留l位小数);
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
某高校在2017年的自主招生考试成绩中随机抽取
名学生的笔试成绩,按成绩分组,得到的频率分布表如下:
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样的方法抽取
名学生进入第二轮面试,求第
组应抽取多少名学生进入第二轮面试;
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数.

组号 | 分组 | 频率 |
第![]() | ![]() | ![]() |
第![]() | ![]() | ![]() |
第![]() | ![]() | ① |
第![]() | ![]() | ![]() |
第![]() | ![]() | ![]() |
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第



(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数.
对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

(1)图中纵坐标
处刻度不清,根据图表所提供的数据还原
;
(2)根据图表的数据按分层抽样,抽取
个元件,寿命为
之间的应抽取几个;
(3)从(2)中抽出的寿命落在
之间的元件中任取
个元件,求事件“恰好有一个寿命为
,一个寿命为
”的概率.

(1)图中纵坐标


(2)根据图表的数据按分层抽样,抽取


(3)从(2)中抽出的寿命落在




某科技公司新研制生产一种特殊疫苗,为确保疫苗质量,定期进行质量检验.某次检验中,从产品中随机抽取100件作为样本,测量产品质量体系中某项指标值,根据测量结果得到如下频率分布直方图:

(1)求频率分布直方图中
的值;
(2)技术分析人员认为,本次测量的该产品的质量指标值X服从正态分布
,若同组中的每个数据用该组区间的中间值代替,计算
,并计算测量数据落在(187.8,212.2)内的概率;
(3)设生产成本为y元,质量指标值为
,生产成本与质量指标值之间满足函数关系
假设同组中的每个数据用该组区间的中间值代替,试计算生产该疫苗的平均成本.
参考数据:
,

.

(1)求频率分布直方图中

(2)技术分析人员认为,本次测量的该产品的质量指标值X服从正态分布


(3)设生产成本为y元,质量指标值为


参考数据:




为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),则
_______,估计该地学生跳绳次数的中位数是_______.


过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对
年龄段的人员进行了调查研究,将各年龄段人数分成5组,
,
,
,
,
,并整理得到频率分布直方图:

(Ⅰ)求图中的
值;
(Ⅱ)求被调查人员的年龄的中位数和平均数;
(Ⅲ)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,在抽取的8人中随机抽取2人,则这2人都来自于第三组的概率是多少?







(Ⅰ)求图中的

(Ⅱ)求被调查人员的年龄的中位数和平均数;
(Ⅲ)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,在抽取的8人中随机抽取2人,则这2人都来自于第三组的概率是多少?
某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如图.

(1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M的概率;
(2)据了解,某网络运营商推出两款流量套餐,详情如下:
流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?

(1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M的概率;
(2)据了解,某网络运营商推出两款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位:M) |
A | 20 | 700 |
B | 30 | 1000 |
流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?
某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

(1)求
的值;
(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.

(1)求

(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.
某研究机构为了解某学校学生使用手机的情况,在该校随机抽取了60名学生(其中男、女生人数之比为2:1)进行问卷调查.进行统计后将这60名学生按男、女分为两组,再将每组学生每天使用手机的时间(单位:分钟)分为
5组,得到如图所示的频率分布直方图(所抽取的学生每天使用手机的时间均不超过50分钟).

(1)求出女生组频率分布直方图中
的值;
(2)求抽取的60名学生中每天使用手机时间不少于30分钟的学生人数.


(1)求出女生组频率分布直方图中

(2)求抽取的60名学生中每天使用手机时间不少于30分钟的学生人数.
某校从参加某次知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,从图中估计总体的众数是多少分?中位数是多少分?
(3)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.




(1)求分数在

(2)根据频率分布直方图,从图中估计总体的众数是多少分?中位数是多少分?
(3)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.