- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某幼儿园根据部分同年龄段女童的身高数据绘制了如图所示的频率分布直方图,其中身高(单位:厘米)的变化范围是[96,106],样本数据分组为
,
,
,
,
.

(1)求出x的值;
(2)已知样本中身高小于100厘米的人数是36,求出样本容量N的数值;
(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的人数.






(1)求出x的值;
(2)已知样本中身高小于100厘米的人数是36,求出样本容量N的数值;
(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的人数.
共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照
分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表

(1)求
的值;
(2)若在满意度评分值为
的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

频率分布表
组别 | 分组 | 频数 | 频率 |
第1组 | ![]() | 8 | 0.16 |
第2组 | ![]() | ![]() | ▆ |
第3组 | ![]() | 20 | 0.40 |
第4组 | ![]() | ▆ | 0.08 |
第5组 | ![]() | 2 | ![]() |
| 合计 | ▆ | ▆ |

(1)求

(2)若在满意度评分值为

在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于
分的选手定为合格选手,直接参加第二轮比赛,大于等于
分的选手将直接参加竞赛选拔赛.已知成绩合格的
名参赛选手成绩的频率分布直方图如图所示,其中
的频率构成等比数列.

(1)求
的值;
(2)估计这
名参赛选手的平均成绩;
(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为
,假设每名选手能否通过竞赛选拔赛相互独立,现有
名选手进入竞赛选拔赛,记这
名选手在竞赛选拔赛中通过的人数为随机变量
,求
的分布列和数学期望.





(1)求

(2)估计这

(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为





某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.

(1)求图中
的值;
(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间
和
内为合格品,重量在区间
内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共
件
,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.
分组 | 频数 | 频率 |
![]() | 8 | |
![]() | | |
![]() | | |
![]() | 16 | 0.16 |
![]() | 4 | 0.04 |
合计 | 100 | 1 |

(1)求图中

(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间





某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700].由于工作中不慎将部分数据丢失,现有以下部分图表:

(1)求图2中A的值;
(2)补全图2频率分布直方图,并求图2中阴影部分的面积;
(3)为了某次展销会,在寿命介于400~600h的产品中抽取5件作为样品,那么在400~500h组应抽取多少个?

分组 | [100,200] | (200,300] | (300,400] | (400,500] | (500,600] | (600,700] |
频数 | | 30 | | | 20 | |
频率 | | | 0.2 | 0.4 | | |
(1)求图2中A的值;
(2)补全图2频率分布直方图,并求图2中阴影部分的面积;
(3)为了某次展销会,在寿命介于400~600h的产品中抽取5件作为样品,那么在400~500h组应抽取多少个?
为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组
,
,…,
,其部分频率分布直方图如图所示.观察图形,回答下列问题.

(1)求成绩在
的频率,并补全这个频率分布直方图:
(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在
和
的学生中选两人,求他们在同一分数段的概率.




(1)求成绩在

(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在


某教师为了分析所任教班级某次考试的成绩,将全班同学的成绩作成统计表和频率分布直方图如下:

(1)求表中t,q及图中a的值;
(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行谈话,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.
分组 | 频数 | 频率 |
[50,60) | 3 | 0.06 |
[60,70) | m | 0.10 |
[70,80) | 13 | n |
[80,90) | p | q |
[90,100] | 9 | 0.18 |
总计 | t | 1 |

(1)求表中t,q及图中a的值;
(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行谈话,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.
某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注扫黑除恶的人群中随机选出
人,并将这
人按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(1)求出
的值;
(2)求这
人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).














(1)求出

(2)求这

地球海洋面积远远大于陆地面积,随着社会的发展,科技的进步,人类发现海洋不仅拥有巨大的经济利益,还拥有着深远的政治利益.联合国于第63届联合国大会上将每年的6月8日确定为“世界海洋日”.2019年6月8日,某大学的行政主管部门从该大学随机抽取100名大学生进行一次海洋知识测试,并按测试成绩(单位:分)分组如下:第一组
,第二组
,第二组
,第四组
,第五组
,得到频率分布直方图如下图:

(1)求实数
的值;
(2)若从第二组、第五组的学生中按组用分层抽样的方法抽取9名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从9人中抽取2人作为正、副队长,求“抽取的2人为不同组”的概率.






(1)求实数

(2)若从第二组、第五组的学生中按组用分层抽样的方法抽取9名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从9人中抽取2人作为正、副队长,求“抽取的2人为不同组”的概率.