- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:
(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案);
(2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;
(3)甲同学的初赛成绩在
,学校为了宣传班级的学习经验,随机抽取分数在
的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.
序号 | 分数段 | 人数 | 频率 |
1 | ![]() | 10 | 0.20 |
2 | ![]() | ① | 0.44 |
3 | ![]() | ② | ③ |
4 | ![]() | 4 | 0.08 |
合计 | 50 | 1 |
(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案);
(2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;
(3)甲同学的初赛成绩在


某中学从高三男生中随机抽取
名学生的身高,将数据整理,得到的频率分布表如下所示,
(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;

(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 5 | 0.050 |
第2组 | ![]() | | 0.350 |
第3组 | ![]() | 30 | |
第4组 | ![]() | 20 | 0.200 |
第5组 | ![]() | 10 | 0.100 |
合计 | ![]() | 1.00 |
(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;

(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.
对某班一次测验成绩进行统计,如下表所示:
(1)求该班成绩在[80,100]内的概率;
(2)求该班成绩在[60,100]内的概率.
分数段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
概率 | 0.02 | 0.04 | 0.17 | 0.36 | 0.25 | 0.15 |
(1)求该班成绩在[80,100]内的概率;
(2)求该班成绩在[60,100]内的概率.
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

某高校自主招生一次面试成绩的茎叶图和频率分布直方图均收到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:

(1)求参加此次高校自主招生面试的总人数
、面试成绩的中位数及分数在
内的人数;
(2)若从面试成绩在
内的学生中任选三人进行随机复查,求恰好有二人分数在
内的概率.

(1)求参加此次高校自主招生面试的总人数


(2)若从面试成绩在


在某大学自主招生考生中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有20人.

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.
(i)求该考场考生“数学与逻辑”科目的平均分;
(ii)若该考场共有7人得分大于7分,其中有2人10分,2人9分,3人8分,从这7中随机抽取两人,求两人成绩之和大于等于18的概率.

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.
(i)求该考场考生“数学与逻辑”科目的平均分;
(ii)若该考场共有7人得分大于7分,其中有2人10分,2人9分,3人8分,从这7中随机抽取两人,求两人成绩之和大于等于18的概率.
最近上映的电影《后来的我们》引起了一阵热潮,为了了解大众对这部电影的评价,随机访问了50名观影者,根据这50人对该电影的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
,
,…,
,
.
(1)求频率分布直方图中
的值,并估计观影者对该电影评分不低于80的概率;
(2)由频率分布直方图估计评分的中位数(保留两位小数)与平均数;
(3)从评分在
的观影者中随机抽取2人,求至少有一人评分在
的概率.





(1)求频率分布直方图中

(2)由频率分布直方图估计评分的中位数(保留两位小数)与平均数;
(3)从评分在


某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.

(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
某中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲、乙两位同学的20次成绩如茎叶图所示:


(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可).


(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可).
某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生称其体重(单位:kg),将所得数据整理后画出了频率分布直方图如图所示,体重在
内适合跑步训练,体重在
内适合跳远训练,体重在
内适合投掷训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的人数之比为( )





A.4:3:1 | B.5:3:1 |
C.5:3:2 | D.3:2:1 |