- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是
~
分及
~
分的学生中选两人,记他们的成绩为
,求满足“
”的概率.


(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是






某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。

长沙梅溪湖步步高购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取
张进行统计,将结果分成6组,分别是:
,
,制成如下所示的频率分布直方图(假设消费金额均在
元的区间内).

(1)若在消费金额为
元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自
元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).





(1)若在消费金额为


(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比.如图所示的是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图.那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)( )


A.18篇 | B.24篇 |
C.25篇 | D.27篇 |
某市为了普及法律知识,增强市民的法制观念,针对本市特定人群举办网上学法普法考试.为了解参考人群的法律知识水平,从一次普法考试中随机抽取了50份答卷进行分析,得到这50份答卷成绩的统计数据如下:

(1)在答题卡的图中作出样本数据的频率分布直方图;
(2)试根据统计数据,估计本次普法考试的平均成绩
和中位数( 同一组中的数据用该组区间的中点值作代表);
(3)已知该市有100 万人参加考试,得分低于60 分的需要重考(不低于60 分为合格,不再重考).若每次重考的合格率都比上一次考试低6 个百分点,试估计第3 次重考的人数.
成绩分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 2 | 5 | 12 | 16 | 10 | 5 |

(1)在答题卡的图中作出样本数据的频率分布直方图;
(2)试根据统计数据,估计本次普法考试的平均成绩

(3)已知该市有100 万人参加考试,得分低于60 分的需要重考(不低于60 分为合格,不再重考).若每次重考的合格率都比上一次考试低6 个百分点,试估计第3 次重考的人数.
某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩
(同一组中的数据用该组区间的中点值作代表);
(3)设根据茎叶图计算出的全班的平均成绩为
,并假设
,且
各自取得每一个可能值的机会相等,在(2)的条件下,求概率
.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩

(3)设根据茎叶图计算出的全班的平均成绩为




为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.
(Ⅰ)求a和n的值;
(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数
和中位数m;
(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=
.

| 男生 | 女生 | 合计 |
优秀 | | | |
不优秀 | | | |
合计 | | | |
(Ⅰ)求a和n的值;
(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数

(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=

P(K2≥k) | 0.50 | 0.05 | 0.025 | 0.005 |
k | 0.455 | 3.841 | 5.024 | 7.879 |

为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?

(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?
我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:

(Ⅰ)若从年龄在
,
的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;
(Ⅱ)若从年龄在
,
的被调查者中各随机选取2人进行调查,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为
,求随机变量
的分布列和数学期望.

(Ⅰ)若从年龄在


(Ⅱ)若从年龄在




