- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如下表:
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
评分类型 | D | C | B | A |

(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.
某中学初一年级500名学生参加某次数学测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:

(1)从总体的500名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

(1)从总体的500名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
某市为了增强市民的消防意识,面向社会招募社区宣传志愿者.现从
岁至
岁的志愿者中随机抽
名按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.若用分层抽样的方法从这
名志愿者中抽取
名参加消防演习活动,则从第
组中抽取的人数为__________.

















某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:
,
,
,…
后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的中位数(精确到0.1)、众数、平均数;
(2)用分层抽样的方法抽取一个容量为20的样本,求各分数段抽取的人数.





(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的中位数(精确到0.1)、众数、平均数;
(2)用分层抽样的方法抽取一个容量为20的样本,求各分数段抽取的人数.
我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:


(1)求出
的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;
(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。

组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ▓ | 0.08 |
第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |

(1)求出

(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;
(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。
在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在
内的记为
,其中“语文”科目成绩在
内的考生有10人.

(1)求该考场考生数学科目成绩为
的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩均为
.在至少一科成绩为
的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为
的概率.




(1)求该考场考生数学科目成绩为

(2)已知参加本考场测试的考生中,恰有2人的两科成绩均为



某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在
岁的问卷中随机抽取了
份, 统计结果如下面的图表所示.


(1)分别求出
的值;
(2)从年龄在
答对全卷的人中随机抽取
人授予“环保之星”,求年龄在
的人中至少有
人被授予“环保之星”的概率.




(1)分别求出

(2)从年龄在




某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段
,
,…,
后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求出这60名学生中化学成绩低于50分的人数;
(2)估计高二年级这次考试化学学科及格率(60分以上为及格);
(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.




(1)求出这60名学生中化学成绩低于50分的人数;
(2)估计高二年级这次考试化学学科及格率(60分以上为及格);
(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.
某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组
,第二组
,第三组
,第四组
,第五组
,绘制成如图所示的频率分布直方图.

(1)求学习时间在
的学生人数;
(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.






(1)求学习时间在

(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布图如图所示,下表是年龄的频率分布表.


(1)现要从年龄较小的第
组中用分层抽样的方法抽取6人,则年龄第
组人数分别是多少?
(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,X表示第3组中抽取的人数,求X的分布列和期望值







(1)现要从年龄较小的第


(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,X表示第3组中抽取的人数,求X的分布列和期望值