- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
与第6题条件相同,家委会决定对班上的中位数以上的同学进行奖励,请问,如图所示的频率分布直方图中,理论上的中位数是( )
A.108.8 | B.114 | C.112 | D.116 |
美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求百度外卖公司的“骑手”一日工资
(单位:元)与送餐单数
的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为
(单位:元),求
的分布列和数学期望;
②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

(Ⅰ)求百度外卖公司的“骑手”一日工资


(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为


②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
2016年,某省环保部门制定了《省工业企业环境保护标准化建设基本要求及考核评分标准》,为了解本省各家企业对环保的重视情况,从中抽取了40家企业进行考核评分,考核评分均在
内,按照
,
,
,
,
的分组作出频率分布直方图如图(满分为100分).

(Ⅰ)已知该省对本省每家企业每年的环保奖励
(单位:万元)与考核评分
的关系式为
(负值为企业上缴的罚金).试估计该省在2016年对这40家企业投放环保奖励的平均值;
(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机2家企业座谈环保经验,求抽取的2家企业全部为考核评分在
内的企业的概率.







(Ⅰ)已知该省对本省每家企业每年的环保奖励



(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机2家企业座谈环保经验,求抽取的2家企业全部为考核评分在

2016年,某省环保部门制定了《省工业企业环境保护标准化建设基本要求及考核评分标准》,为了解本省各家企业对环保的重视情况,从中抽取了40家企业进行考核评分,考核评分均在
内,按照
,
,
,
,
的分组作出频率分布直方图如图(满分为100分).

(Ⅰ)已知该省对本省每家企业每年的环保奖励
(单位:万元)与考核评分
的关系式为
(负值为企业上缴的罚金).试估计该省在2016年对这40家企业投放环保奖励的平均值;
(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机3家企业座谈环保经验,设
为所抽取的3家企业中考核评分在
内的企业数,求随机变量
的分布列和数学期望.







(Ⅰ)已知该省对本省每家企业每年的环保奖励



(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机3家企业座谈环保经验,设



以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

(1)计算该炮兵连这8周中总的命中频率
,并确定第几周的命中频率最高;
(2)以(1)中的
作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为
,求
的数学期望;
(3)以(1)中的
作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过
?(取
)

(1)计算该炮兵连这8周中总的命中频率

(2)以(1)中的



(3)以(1)中的



某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是
,样本数据分组为第一组
,第二组
,第三组
,第四组
,第五组
.
(1)求直方图中
的值;
(2)如果年上缴税收不少于
万元的企业可申请政策优惠,若共抽取企业
个,试估计有多少企业可以申请政策优惠;
(3)若从第一组和第二组中利用分层抽样的方法抽取
家企业,试求在这
家企业中选
家,这
家企业年上缴税收在同一组的概率.






(1)求直方图中

(2)如果年上缴税收不少于


(3)若从第一组和第二组中利用分层抽样的方法抽取





某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年
户居民每户的月均用电量(单位:度),将数据按照
,
,
,
,
,
,
,
,
分成9组,制成了如下图所示的频率分布直方图.

(1)求频率分布直方图中
的值并估计居民月均用电量的中位数;
(2)从样本中月均用电量不低于700度的用户中随机抽取4户,用
表示月均用电量不低于800度的用户数,求随机变量
的分布列及数学期望.











(1)求频率分布直方图中

(2)从样本中月均用电量不低于700度的用户中随机抽取4户,用


某仪器厂从新生产的一批零件中随机抽取40个检测.如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为
、
、
、
、
、
、
、
,则样本的中位数在( )










A.第3组 | B.第4组 | C.第5组 | D.第6组 |
某电子元件厂对一批新产品的使用寿命进行检验,并且厂家规定使用寿命在
为合格品,使用寿命超过500小时为优质品,质检科抽取了一部分产品做样本,经检测统计后,绘制出了该产品使用寿命的频率分布直方图(如图):

(1)根据频率分布直方图估计该厂产品为合格品或优质品的概率,并估计该批产品的平均使用寿命;
(2)从这批产品中,采取随机抽样的方法每次抽取一件产品,抽取4次,若以上述频率作为概率,记随机变量
为抽出的优质品的个数,列出
的分布列,并求出其数学期望.


(1)根据频率分布直方图估计该厂产品为合格品或优质品的概率,并估计该批产品的平均使用寿命;
(2)从这批产品中,采取随机抽样的方法每次抽取一件产品,抽取4次,若以上述频率作为概率,记随机变量


某仪器厂从新生产的一批零件中随机抽取40个检测.如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为
、
,
、
、
、
、
、
,则样本的中位数在( )










A.第3组 | B.第4组 | C.第5组 | D.第6组 |