- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为
(简称血酒含量,单位是毫克
毫升),当
时,为酒后驾车;当
时,为醉酒驾车,如图为某市交管部门在一次夜间行动中依法查处的60名酒后违法驾驶机动车者抽血检测后所得频率分布直方图.

(1)求查获的醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数
的分布列和数学期望.





(1)求查获的醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数

某市为鼓励居民节约用水,拟实行阶梯水价,每人用水量中不超过
立方米按2元/立方米收费,超出
立方米但不高于
的部分按4元/立方米收费,超出
的部分按8元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图所示频率分布直方图:

(1)如果
为整数,那么根据此次调查,为使40%以上居民在该月的用水价格为2元/立方米,
至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当
时,估计该市居民该月的人均水费.





(1)如果


(2)假设同组中的每个数据用该组区间的右端点值代替.当

我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
,…,
分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中
的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)






(1)求直方图中

(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年
位居民毎人的月均用水量(单位:吨),将数据按照
分成
组,制成了如图所示的频率分布直方图.

(1)求直方图中
的值;
(2)若该市有
万居民,估计全市居民中月均用水量不低于
吨的人数,并说明理由;
(3)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值(精确到
),并说明理由.







(1)求直方图中

(2)若该市有


(3)若该市政府希望使




为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女生比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:
男生成绩:
女生成绩:

(Ⅰ)根据上述数据完成下列
列联表:
根据此数据你认为能否有
以上的把握认为体育运动知识竞赛成绩是否优秀与性别有关?
参考公式:
,(
),
(Ⅱ)在这220人中,学校按男、女比例采用分层抽样的方式从成绩优秀的学生中抽取6人进行培训,最后再从中随机抽取2人参加全市中小学生体育运动知识竞赛,求这2人是一男一女的概率.
男生成绩:
分数段 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 9 | 10 | 21 | 57 | 23 |
女生成绩:

(Ⅰ)根据上述数据完成下列

| 优秀 | 非优秀 | 合计 |
男生 | ![]() | ![]() | |
女生 | ![]() | ![]() | |
合计 | | | |
根据此数据你认为能否有

参考公式:


![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在这220人中,学校按男、女比例采用分层抽样的方式从成绩优秀的学生中抽取6人进行培训,最后再从中随机抽取2人参加全市中小学生体育运动知识竞赛,求这2人是一男一女的概率.
某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:

(1)求
的值及该校学生从家到校的平均时间;
(2)若该校因学生寝室不足,只能容纳全校
的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

(1)求

(2)若该校因学生寝室不足,只能容纳全校

以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

由图可得,该炮兵连这8周中第__________周的命中频率最高.

由图可得,该炮兵连这8周中第__________周的命中频率最高.
某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下频数分布直方图:

该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的频率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2至5月份的数据,求出就诊人数
关于昼夜温差
的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:
,
)

该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的频率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2至5月份的数据,求出就诊人数


(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:


某校高三文科班150名男生在“学生体质健康50米跑”单项测试中,成绩全部介于6秒与11秒之间.现将测试结果分成五组:第一组
;第二组
,…,第五组
.下图是按上述分组方法得到的频率分布直方图.按国家标准,高三男生50米跑成绩小于或等于7秒认定为优秀,若已知第四组共48人,则该校文科班男生在这次测试中成绩优秀的人数是__________.




为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:
,
,
,
,
,并得到如下频率分布直方图.

(I)求图中
的值,并根据频率分布直方图统计这600名志愿者中年龄在
的人数;
(II)在抽取的100名志愿者中按年龄分层抽取5名参加区电视台“文明伴你行”节目录制,再从这5名志愿者中随机抽取2名到现场分享劝导制止行人闯红灯的经历,求至少有1名年龄不低于35岁的概率.






(I)求图中


(II)在抽取的100名志愿者中按年龄分层抽取5名参加区电视台“文明伴你行”节目录制,再从这5名志愿者中随机抽取2名到现场分享劝导制止行人闯红灯的经历,求至少有1名年龄不低于35岁的概率.