- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点


(1)求频率分布直方图中

(2)估计总体中成绩落在

(3)根据频率分布直方图估计

对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()


A.92% | B.24% | C.56% | D.76% |
随着银行业的不断发展,市场竞争越来越激烈,顾客对银行服务质量的要求越来越高,银行为了提高柜员员工的服务意识,加强评价管理,工作中让顾客对服务作出评价,评价分为满意、基本满意、不满意三种.某银行为了比较顾客对男女柜员员工满意度评价的差异,在下属的四个分行中随机抽出40人(男女各半)进行分析比较.对40人一月中的顾客评价“不满意”的次数进行了统计,按男、女分为两组,再将每组柜员员工的月“不满意”次数分为5组:
,
,
,
,
,得到如下频数分布表.
(1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?
(2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.





分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
女柜员 | 2 | 3 | 8 | 5 | 2 |
男柜员 | 1 | 3 | 9 | 4 | 3 |
(1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?
(2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.
某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.

(1)求频率分布直方图中a的值;
(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.

(1)求频率分布直方图中a的值;
(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.
为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:
),并将样本数据分组为
,
,
,
,
,
,
,其频率分布直方图如图所示.

(1)若样本中月均用电量在
的居民有
户,求样本容量;
(2)求月均用电量的中位数;
(3)在月均用电量为
,
,
,
的四组居民中,用分层随机抽样法抽取
户居民,则月均用电量在
的居民应抽取多少户?









(1)若样本中月均用电量在


(2)求月均用电量的中位数;
(3)在月均用电量为






交通部门对某路段公路上行驶的汽车速度实施监控,从速度不小于
的汽车中抽取200辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,则时速在
以上的汽车有________辆.



有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照
,
,
,
,
的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在
,
的数据).

(1)求样本容量n和频率分布直方图中x、y的值;
(2)分数在
的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.








(1)求样本容量n和频率分布直方图中x、y的值;
(2)分数在

为了解某社区物业部门对本小区业主的服务情况,随机访问了
位业主,根据这
位业主对物业部门的评分情况,绘制频率分布直方图(如图所示),其中样本数据分组区间为
由于某种原因,有个数据出现污损,请根据图中其他数据分析,评分不小于
分的业主有( )位.






A.![]() | B.![]() | C.![]() | D.![]() |
共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(Ⅰ) 求图中
的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

(Ⅰ) 求图中

(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.