- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线
的焦点
且斜率为1的直线交抛物线
于
,
两点,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(
,
均不与点
重合).设直线
,
的斜率分别为
,
,
.直线
是否过定点?如果是,请求出所有定点;如果不是,请说明理由.






(Ⅰ)求抛物线

(Ⅱ)抛物线
















已知抛物线
:
的焦点为
,
为抛物线上一点,且
.
(1)求抛物线
的方程;
(2)若不经过坐标原点
的直线
:
与抛物线
相交于不同的两点
、
,且满足
.证明:直线
过
轴上一定点
,并求出点
的坐标.





(1)求抛物线

(2)若不经过坐标原点











在平面直角坐标系
中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线
的准线方程和焦点坐标
;
(2)若
,求证:直线
恒过定点;
(3)当
时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?






(1)求抛物线


(2)若


(3)当






已知抛物线
与圆
(I)求抛物线
上一点
与圆
上一动点
的距离的最小值;
(II)将圆
向上平移
个单位后能否使圆
在抛物线
内并触及抛物线
(与
相切于顶点)的底部?若能,请求出
的值,若不能,试说明理由;
(III)设点
为
轴上一个动点,过
作抛物线
的两条切线,切点分别为
,求证:直线
过定点,并求出定点坐标.


(I)求抛物线




(II)将圆







(III)设点







如图所示,抛物线C:x2=2py(p>0),其焦点为F,C上的一点M(4,m)满足|MF|=4.
(1)求抛物线C的标准方程;
(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.
(1)求抛物线C的标准方程;
(2)过点E(﹣1,0)作不经过原点的两条直线EA,EB分别与抛物线C和圆F:x2+(y﹣2)2=4相切于点A,B,试判断直线AB是否经过焦点F.

已知A、B是抛物线
上的两点,O是抛物线的顶点,OA⊥O

A. (I)求证:直线AB过定点M(4,0); (II)设弦AB的中点为P,求点P到直线 ![]() |
已知抛物线
,
的三个顶点都在抛物线上,
为坐标原点,设
三条边
的中点分别为
,且
的纵坐标分别为
.若直线
的斜率之和为
,则
的值为()











A.![]() | B.![]() | C.![]() | D.![]() |
设
为抛物线
的焦点,过点
的直线
与抛物线
相交于
、
两点.
(1)若
,求此时直线
的方程;
(2)若与直线
垂直的直线
过点
,且与抛物线
相交于点
、
,设线段
、
的中点分别为
、
,如图,求证:直线
过定点;

(3)设抛物线
上的点
、
在其准线上的射影分别为
、
,若△
的面积是△
的面积的两倍,如图,求线段
中点的轨迹方程.







(1)若


(2)若与直线












(3)设抛物线









已知动点
到直线
的距离比到定点
的距离大1.
(1)求动点
的轨迹
的方程.
(2)若
为直线
上一动点,过点
作曲线
的两条切线
,
,切点为
,
,
为
的中点.
①求证:
轴;
②直线
是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.



(1)求动点


(2)若










①求证:

②直线
