- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 与抛物线焦点弦有关的几何性质
- 抛物线的通径问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设拋物线
的焦点为
,直线
,若过焦点
的直线与抛物线
相交于
两点,则以线段
为直径的圆与直线
的位置关系为( )








A.相交 | B.相切 | C.相离 | D.以上三个答案均有可能 |
已知直线
:
与直线
关于
轴对称.
(1)若直线
与圆
相切于点
,求
的值和
点的坐标;
(2)直线
过抛物线
的焦点,且与抛物线
交于
,
两点, 求
的值 .





(1)若直线





(2)直线







已知抛物线:
,直线l过它的焦点F,且与抛物线交于A,B两点,则以AB为直径的圆与抛物线的准线的位置关系是( )

A.相离 | B.相切 | C.相交 | D.与P的取值有关 |