- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆在运动过程中,其圆心M到点(0,1)与到直线y=-1的距离始终保持相等.
(1)求圆心M的轨迹方程;
(2)若直线
与点M的轨迹交于A、B两点,且
,求k的值.
(1)求圆心M的轨迹方程;
(2)若直线


已知椭圆
的一个焦点恰为抛物线
的焦点
,设抛物线的准线
与
轴的交点为
,过
的直线与抛物线交于
,
两点,若以线段
为直径的圆过点
,则
______ .












抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.今有抛物线
(
),如图,一平行
轴的光线射向抛物线上的点P,反射后又射向抛物线上的点
,再反射后又沿平行
轴方向射出,且两平行光线间的最小距离为3,则抛物线的方程为___.





