- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线l:y=k(x﹣1)(k<0)与抛物线C:y2=﹣4x相交于A、B两点,F为抛物线的焦点且满足|AF|=2|BF|,则k的值是( )
A.![]() | B.![]() | C.![]() | D.﹣2![]() |
已知抛物线
,过点
的直线与抛物线
相切,设第一象限的切点为
.
(1)求点
的坐标;
(2)若过点
的直线
与抛物线
相交于两点
,圆
是以线段
为直径的圆过点
,求直线
的方程.




(1)求点

(2)若过点








已知抛物线C:y2=2px(p>0)上的点A(4,t)到其焦点F的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.
在直角坐标系
中,过点
的直线与抛物线
相交于
,
两点,弦
的中点
的轨迹记为
.
(1)求
的方程;
(2)已知直线
与
相交于
,
两点.
(i)求
的取值范围;
(ii)
轴上是否存在点
,使得当
变动时,总有
?说明理由.








(1)求

(2)已知直线




(i)求

(ii)




已知抛物线
的顶点在坐标原点,焦点为圆
的圆心.
(1)求抛物线
的标准方程和准线方程;
(2)若直线
为抛物线
的切线,证明:圆心
到直线
的距离恒大于
.


(1)求抛物线

(2)若直线




