刷题宝
  • 刷题首页
题库 高中数学

题干

在直角坐标系中,过点的直线与抛物线相交于,两点,弦的中点的轨迹记为.
(1)求的方程;
(2)已知直线与相交于,两点.
(i)求的取值范围;
(ii)轴上是否存在点,使得当变动时,总有?说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-29 05:24:57

答案(点此获取答案解析)

同类题1

直线与椭圆相交于A,B两点,设线段AB的中点为M,则动点M的轨迹方程为(   )
A.B.
C.D.

同类题2

在平面直角坐标系中,点是圆:上的动点,定点,线段的垂直平分线交于,记点的轨迹为.
(Ⅰ)求轨迹的方程;
(Ⅱ)若动直线:与轨迹交于不同的两点、,点在轨迹上,且四边形为平行四边形.证明:四边形的面积为定值.

同类题3

(文)如图,三定点、、,三动点、、满足,,,.
(Ⅰ)求动直线斜率的变化范围;
(Ⅱ)求动点的轨迹方程.

同类题4

已知平面上一动点到定点的距离与它到直线的距离之比为,记动点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)设直线与曲线交于,两点,为坐标原点,若,求面积的最大值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 曲线与方程
  • 轨迹问题
  • 求平面轨迹方程
  • 判断直线与抛物线的位置关系
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)