- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为
.
(1)求动点M轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,问k1+k2是否为定值?若是的求出这个值.

(1)求动点M轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,问k1+k2是否为定值?若是的求出这个值.
在平面直角坐标系xOy中,已知椭圆C:
的左、右顶点为A,B,右焦点为F.过点A且斜率为k(
)的直线交椭圆C于另一点P.

(1)求椭圆C的离心率;
(2)若
,求
的值;
(3)设直线l:
,延长AP交直线l于点Q,线段BQ的中点为E,求证:点B关于直线EF的对称点在直线PF上.



(1)求椭圆C的离心率;
(2)若


(3)设直线l:










(1)求椭圆

(2)直线











设
、
分别为椭圆
的左右顶点,设点
为直线
上不同于点
的任意一点,若直线
、
分别与椭圆相交于异于
、
的点
、
.
(1)判断
与以
为直径的圆的位置关系(内、外、上)并证明.
(2)记直线
与轴的交点为
,在直线
上,求点
,使得
.












(1)判断


(2)记直线





已知椭圆C:
的长轴是短轴的两倍,点
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为
、
、
,且
、
、
恰好构成等比数列.

(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究
是否为定值?若是,求出这个值;否则求出它的取值范围.









(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究

给定椭圆C : 
,称圆心在原点,半径为
的圆是椭圆C 的“伴随圆”.若椭圆C 的一个焦点为F1(
, 0) ,其短轴上的一个端点到F1 的距离为
(1)求椭圆C 的方程及其“伴随圆”方程;
(2)若倾斜角 45°的直线l 与椭圆C 只有一个公共点,且与椭圆C 的伴随圆相交于M .N 两点,求弦MN 的的长;
(3)点P 是椭圆C 的伴随圆上一个动点,过点P 作直线l1、l2,使得l1、l2与椭圆C 都只有一个公共点,判断l1、l2的位置关系,并说明理由.





(1)求椭圆C 的方程及其“伴随圆”方程;
(2)若倾斜角 45°的直线l 与椭圆C 只有一个公共点,且与椭圆C 的伴随圆相交于M .N 两点,求弦MN 的的长;
(3)点P 是椭圆C 的伴随圆上一个动点,过点P 作直线l1、l2,使得l1、l2与椭圆C 都只有一个公共点,判断l1、l2的位置关系,并说明理由.
已知椭圆E:
(a>b>0)的左,右焦点分别为F1,F2,且F1,F2与短轴的一个端点Q构成一个等腰直角三角形,点P(
)在椭圆E上,过点F2作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆E于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R(
,0)
(3)求△MNF2面积的最大值.


(1)求椭圆的方程
(2)求证:直线MN过定点R(

(3)求△MNF2面积的最大值.
已知椭圆
长轴的一个端点是抛物线
的焦点,且椭圆焦点与抛物线焦点的距离是1.
(1)求椭圆
的标准方程;
(2)若
是椭圆
的左右端点,
为原点,
是椭圆
上异于
的任意一点,直线
分别交
轴于
,问
是否为定值,说明理由.


(1)求椭圆

(2)若










已知椭圆
:
的右焦点
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)直线
过点
,且与椭圆
交于
,
两点,过原点
作直线
的垂线,垂足为
,如果△
的面积为
(
为实数),求
的值.





(1)求椭圆

(2)直线












已知椭圆
的离心率为
其右顶点为
,下顶点为
,定点
,
的面积为
过点
作与
轴不重合的直线
交椭圆
于
两点,直线
分别与
轴交于
两点.

(1)求椭圆
的方程;
(2)试探究
的横坐标的乘积是否为定值,说明理由.
















(1)求椭圆

(2)试探究
