- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆
的方程;
(2)若斜率为
的直线
与椭圆
交于
、
两点,点
为椭圆
上一点,记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?请证明你的结论


(1)试求椭圆

(2)若斜率为












已知椭圆
,的左右焦点分别是
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切,点
在椭圆
上
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且
,
的面积是否为定值?若是,求出定值;若不是,请说明理由






(1)求椭圆

(2)若直线





已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)已知斜率为
的直线
与椭圆
交于两个不同点
,点
的坐标为
,设直线
与
的傾斜角分别为
,证明:
.



(1)求椭圆

(2)已知斜率为










已知椭圆
的焦距为4,点P(2,3)在椭圆上.
(1)求椭圆C的方程;
(2)过点P引圆
的两条切线PA,PB,切线PA,PB与椭圆C的另一个交点分别为A,B,试问直线AB的斜率是否为定值?若是,求出其定值,若不是,请说明理由.

(1)求椭圆C的方程;
(2)过点P引圆

如图,分别过椭圆
左、右焦点
的动直线
相交于
点,与椭圆
分别交于
与
不同四点,直线
的斜率
满足
.已知当
与
轴重合时,
,
.

(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值?若存在,求出
点坐标并求出此定值;若不存在,说明理由.















(1)求椭圆

(2)是否存在定点



已知椭圆
的左顶点为
,上顶点为
,右焦点为
,离心率为
,
的面积为
.
(1)求椭圆
的方程;
(2)若
,
为
轴上的两个动点,且
,直线
和
分别与椭圆
交于
,
两点,若
是坐标原点,求证:
、
、
三点共线。







(1)求椭圆

(2)若













已知中心在原点的椭圆C1和抛物线C2有相同的焦点(1,0),椭圆C1过点
,抛物线
的顶点为原点.

(1)求椭圆C1和抛物线C2的方程;
(2)设点P为抛物线C2准线上的任意一点,过点P作抛物线C2的两条切线PA,PB,其中A、B为切点.
设直线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
②若直线AB交椭圆C1于C,D两点,S△PAB,S△PCD分别是△PAB,△PCD的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.



(1)求椭圆C1和抛物线C2的方程;
(2)设点P为抛物线C2准线上的任意一点,过点P作抛物线C2的两条切线PA,PB,其中A、B为切点.
设直线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
②若直线AB交椭圆C1于C,D两点,S△PAB,S△PCD分别是△PAB,△PCD的面积,试问:

已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为
(1)求椭圆
的方程;
(2)若直线
与椭圆
分别交于
两点,且
,试问点
到直线
的距离是否为定值,证明你的结论.









(1)求椭圆

(2)若直线






如图,在平面直角坐标系xOy中,已知椭圆
的离心率为
,右焦点到直线
的距离为1.

求椭圆的标准方程;
若P为椭圆上的一点
点P不在y轴上
,过点O作OP的垂线交直线
于点Q,求
的值.









