刷题首页
题库
高中数学
题干
已知椭圆
E
:
(
a
>
b
>0)的左,右焦点分别为
F
1
,
F
2
,且
F
1
,
F
2
与短轴的一个端点
Q
构成一个等腰直角三角形,点
P
(
)在椭圆
E
上,过点
F
2
作互相垂直且与
x
轴不重合的两直线
AB
,
CD
分别交椭圆
E
于
A
,
B
,
C
,
D
且
M
,
N
分别是弦
AB
,
CD
的中点
(1)求椭圆的方程
(2)求证:直线
MN
过定点
R
(
,0)
(3)求△
MNF
2
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-12 07:10:36
答案(点此获取答案解析)
同类题1
设椭圆
的一个顶点与抛物线
的焦点重合,
,
分别是椭圆
的左、右焦点,离心率
,过椭圆
右焦点
的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
(Ⅲ)设点
是一个动点,若直线
的斜率存在,且
为
中点,
,求实数
的取值范围.
同类题2
在平面直角坐标系
xOy
中,已知椭圆
C
:
=1(
a
>
b
>0)的离心率为
,且过点
,点
P
在第四象限,
A
为左顶点,
B
为上顶点,
PA
交
y
轴于点
C
,
PB
交
x
轴于点
D
.
(1) 求椭圆
C
的标准方程;
(2) 求△
PCD
面积的最大值.
同类题3
已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
同类题4
已知
,
是动点,以
为直径的圆与圆
:
内切.
(1)求
的轨迹
的方程;
(2)设
是圆
与
轴的交点,过点
的直线与
交于
两点,直线
交直线
于点
,求证:
三点共线.
同类题5
已知椭圆
的左、右焦点分别为
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
两点,与椭圆
交于
两点,且
,当
取得最小值时,求直线
的方程并求此时
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题