刷题首页
题库
高中数学
题干
已知椭圆
的标准方程为
,该椭圆经过点
,且离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
长轴上一点
作两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-27 09:50:09
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,且左焦点与抛物线
的焦点重合。
(1)求椭圆的标准方程;
(2)若直线
与椭圆交于不同的两点
、
,线段
的中点记为
,且线段
的垂直平分线过定点
,求
的取值范围。
同类题2
中心在原点O,焦点F
1
、F
2
在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
同类题3
(江苏省南京市2018届高三第三次模拟考试数学试题)如图,在平面直角坐标系
中,椭圆
经过点
,离心率为
. 已知过点
的直线
与椭圆
交于
两点.
(1)求椭圆
的方程;
(2)试问
轴上是否存在定点
,使得
为定值.若存在,求出点
的坐标;若不存在,请说明理由.
同类题4
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
同类题5
已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
,
两点,若
,求
(
为坐标原点)面积的最大值及此时直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程