刷题首页
题库
高中数学
题干
已知椭圆
的标准方程为
,该椭圆经过点
,且离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
长轴上一点
作两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-27 09:50:09
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,直线
过点
,
,且与椭圆
相切于点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的动直线与曲线
相交于不同的两点
、
,曲线
在点
、
处的切线交于点
.试问:点
是否在某一定直线上,若是,试求出定直线的方程;否则,请说明理由.
同类题2
在平面直角坐标系中,焦点在
轴上的椭圆
经过点
,其中
为椭圆
的离心率.过点
作斜率为
的直线
交椭圆
于
两点(
在
轴下方).
(1)求椭圆
的方程;
(2)过原点
且平行于
的直线交椭圆
于点
,
,求
的值;
(3)记直线
与
轴的交点为
.若
,求直线
的斜率
.
同类题3
椭圆
的离心率是
,过点P(0,1)做斜率为k的直线l,椭圆E与直线l交于A,B两点,当直线l垂直于y轴时
.
(1)求椭圆E的方程;
(2)当k变化时,在x轴上是否存在点M(m,0),使得△AMB是以AB为底的等腰三角形,若存在求出m的取值范围,若不存在说明理由.
同类题4
已知,椭圆
过点
,两个焦点为
,
,
是椭圆
上的两个动点,直线
的斜率与
的斜率互为相反数.
求椭圆
的方程;
求证:直线
的斜率为定值.
同类题5
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程