刷题首页
题库
高中数学
题干
设椭圆
:
的左右焦点分别为
,
,离心率
,过
且垂直于
轴的直线被椭圆
截得的长为
.
(1)求椭圆
的方程;
(2)已知点
的坐标为
,直线
:
不过点
且与椭圆
交于
、
两点,设
为坐标原点,
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 11:48:17
答案(点此获取答案解析)
同类题1
设椭圆
的离心率为
,直线
过椭圆的右焦点
,与椭圆交于点
;若
垂直于
轴,则
.
(1)求椭圆的方程;
(2)椭圆的左右顶点分别为
,直线
与直线
交于点
.求证:点
在定直线上.
同类题2
椭圆
的焦点在
轴上,则它的离心率
的取值范围是__________.
同类题3
若焦点在x轴上的椭圆
的离心率为
,则n=( )
A.
B.
C.
D.
同类题4
在平面直角坐标系
xOy
中,已知椭圆
E
:
(
a
>
b
>0)的离心率为
,且椭圆
E
的短轴的端点到焦点的距离等于2.
(1)求椭圆
E
的标准方程;
(2)己知
A
,
B
分别为椭圆
E
的左、右顶点,过
x
轴上一点
P
(异于原点)作斜率为
k
(
k
≠0)的直线
l
与椭圆
E
相交于
C
,
D
两点,且直线
AC
与
BD
相交于点
Q
.①若
k
=1,求线段
CD
中点横坐标的取值范围;②判断
是否为定值,并说明理由.
同类题5
已知椭圆
的中心在原点,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,离心率等于
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
作直线
交椭圆
于
两点,交
轴于
点,若
,求证
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题