刷题首页
题库
高中数学
题干
设
是圆
上的一动点,点
在直线
上线段
的垂直平分线交直线
于点
.
(1)若点
的轨迹为椭圆,则求
的取值范围;
(2)设
时对应的椭圆为
,
为椭圆的右顶点,直线
与
交于
、
两点,若
,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 08:51:56
答案(点此获取答案解析)
同类题1
圆
,动圆
过点
且与圆
相切,记圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)若
分别是轨迹
与
轴的左、右交点,动点
满足
,连接
交轨迹
于点
,问:
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
,
的交点?若存在,求出点
的坐标;若不存在,说明理由.
同类题2
设圆(
x
+1)
2
+
y
2
=25的圆心为
C
,
A
(1,0)是圆内一定点,
Q
为圆周上任一点.线段
AQ
的垂直平分线与
CQ
的连线交于点
M
,则
M
的轨迹方程为( )
A.
B.
C.
D.
同类题3
已知椭圆
:
的左、右焦点分别为
、
,以点
为圆心,以3为半径的圆与以点
为圆心,以1为半径的圆相交,且交点在椭圆
上.设点
,在
中,
.
(1)求椭圆
的方程;
(2)设过点
的直线
不经过点
,且与椭圆
相交于
,
两点,若直线
与
的斜率分别为
,
,求
的值.
同类题4
一动圆过定点
,且与定圆
内切,求动圆圆心
的轨迹方程.
同类题5
在平面直角坐标系
中,矩形
的一边
在
轴上,另一边
在
轴上方,且
,
,其中
,如图所示.
(1)若
为椭圆的焦点,且椭圆经过
两点,求该椭圆的方程;
(2)若
为双曲线的焦点,且双曲线经过
两点,求双曲线的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
椭圆中的直线过定点问题