刷题首页
题库
高中数学
题干
已知椭圆
:
的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆交于
,
两点,点
关于
轴的对称点为
,求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-24 12:14:31
答案(点此获取答案解析)
同类题1
已知直线
经过椭圆
:
的左顶点
和上顶点
,椭圆
的右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
与直线
分别交于
两点.
(1)求椭圆方程;
(2)求线段
的长度的最小值;
(3)当线段
的长度最小时,在椭圆上有两点
,使得
,
的面积都为
,求直线
在
y
轴上的截距.
同类题2
若椭圆
的焦点在
轴上,过点
作圆
的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程为
.
同类题3
已知椭圆
的左、右焦点分别为
(1)求以椭圆
C
的焦点为顶点,顶点为焦点的椭圆方程;
(2)过椭圆
C
的左焦点且倾斜角为
的直线与椭圆交于
A,B
两点,求
的面积;
(3)过定点
的直线交椭圆
C
于
AB
两点,求弦
AB
中点
P
的轨迹方程.
同类题4
已知椭圆
的中心在原点,其中一个焦点与抛物线
的焦点重合,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设椭圆的左右焦点分别为
,过
的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.
同类题5
已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题