刷题首页
题库
高中数学
题干
已知椭圆
C
:
(
)经过点
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
O
为原点,直线
l
:
(
)与椭圆
C
交于两个不同点
P
、
Q
,直线
AP
与
x
轴交于点
M
,直线
AQ
与
x
轴交于点
N
,若
,求证:直线
l
经过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 01:10:36
答案(点此获取答案解析)
同类题1
椭圆
E
:
(
)的离心率为
,右焦点为
F
,上顶点为
B
,且
.
(1)求椭圆
E
的方程:
(2)是否存在直线
l
,使得
l
交椭圆
E
于
M
,
N
两点,且
F
恰是
的垂心?若存在,求出直线
l
的方程:若不存在,说明理由,
同类题2
椭圆
的离心率为
,则
的值为( )
A.-21
B.21
C.
或21
D.
或21
同类题3
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的长半轴长.
(1)求
,
的方程;
(2)设
与
轴的交点为M,过坐标原点O的直线
与
相交于点A,B,直线MA,MB分别与
相交与D,
A.
①证明:
;
②记△MAB,△MDE的面积分别是
.问:是否存在直线
,使得
=
?请说明理由.
同类题4
已知双曲线
的离心率为
,左、右焦点分别为
、
,一条准线的方程为
.
(1)求双曲线
的方程;
(2)若双曲线
上的一点
满足
,求
的值;
(3)若直线
与双曲线
交于不同的两点
,且
在以
为圆心的圆上,求实数
的取值范围.
同类题5
已知椭圆C的标准方程为:
,该椭圆经过点P(1,
),且离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆
长轴上一点S(1,0)作两条互相垂直的弦AB、C
A.若弦AB、CD的中点分别为M、N,证明:直线MN恒过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求直线与椭圆的交点坐标