- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在原点,焦点在
轴上,短轴长和焦距都等于2,
是椭圆上的一点,且
在第一象限内,过
且斜率等于
的直线与椭圆
交于另一点
,点
关于原点的对称点为
.

(1)求椭圆
的方程;
(2)证明:直线
的斜率为定值;
(3)求
面积的最大值.











(1)求椭圆

(2)证明:直线

(3)求

已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.






(1)求点

(2)设点











已知椭圆
的方程为
,
是椭圆上的一点,且
在第一象限内,过
且斜率等于-1的直线与椭圆
交于另一点
,点
关于原点的对称点为
.

(1)证明:直线
的斜率为定值;
(2)求
面积的最大值.










(1)证明:直线

(2)求

已知椭圆
:
的左右焦点分别为
、
,左右顶点分别是
、
,长轴长为
,
是以原点为圆心,
为半径的圆的任一条直径,四边形
的面积最大值为
.
(1)求椭圆
的方程;
(2)不经过原点的直线
:
与椭圆交于
、
两点,
①若直线
与
的斜率分别为
,
,且
,求证:直线
过定点,并求出该定点的坐标;
②若直线
的斜率是直线
、
斜率的等比中项,求
面积的取值范围.











(1)求椭圆

(2)不经过原点的直线




①若直线






②若直线




在平面直角坐标系
中,点
是圆
:
上的动点,定点
,线段
的垂直平分线交
于
,记
点的轨迹为
.
(Ⅰ)求轨迹
的方程;
(Ⅱ)若动直线
:
与轨迹
交于不同的两点
、
,点
在轨迹
上,且四边形
为平行四边形.证明:四边形
的面积为定值.










(Ⅰ)求轨迹

(Ⅱ)若动直线









已知椭圆
:
过点
,
为椭圆的半焦距,且
,过点
作两条互相垂直的直线
,
与椭圆
分别交于另两点
,
.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,求
的面积;
(3)若线段
的中点在
轴上,求直线
的方程.











(1)求椭圆

(2)若直线



(3)若线段



过椭圆
的左焦点
作斜率为
的直线交椭圆于
,
两点,
为弦
的中点,直线
交椭圆于
,
两点.
(1)设直线
的斜率为
,求
的值;
(2)若
,
分别在直线
的两侧,
,求
的面积.










(1)设直线



(2)若





